簡易檢索 / 詳目顯示

研究生: 吳曉斌
Wu, Xiao-Bin
論文名稱: 正念訓練回饋系統介面設計
Mindfulness Feedback Interface(MFI) Design
指導教授: 劉世南
Liou, Shyh-Nan
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 創意產業設計研究所
Institute of Creative Industries Design
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 143
中文關鍵詞: 正念訓練生物回饋心理回饋設計思考介面設計
外文關鍵詞: Mindfulness, Biofeedback, Feedback, Interface Design
相關次數: 點閱:180下載:31
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代社會人們的生活面臨越來越多的壓力(如:家庭、學業、工作中等),導致人們生理或是心理上的疾病增加(如:失眠、焦慮、厭食症等)。因此越多的人們開始尋求能夠幫助自我調節的緩解壓力和放鬆平靜的方法。 「正念訓練」(Mindfulness Training)即為其中受到重視與使用的減壓方法,通過正念訓練實現減壓、緩解臨床症狀成為心理學、臨床醫學等領域的主要研究發展方向。
    本研究目的為提高正念訓練的學習效果。經由與正念訓練研究的臨床心理學專家之跨領域合作,本研究旨在探討:在智慧型手機及可穿戴式設備的條件上,發展APP能提供正念訓練,以及提供及時、準確的訓練及學習回饋,以幫助使用者了解自己進行的訓練是否有效,以得更好的自我學習。基於文獻評論,我們了解到當使用者在進行正念訓練時,正念訓練的效果會反應在其生理及心理狀態的變化上,同時,隨著智慧型手機及可穿戴式設備的發展,使用者已可隨身攜帶,隨時輔助自己訓練,以幫助自己記錄訓練情況的健康管理系統。因此,我們整合設計正念訓練的使用者生理及心理狀態的回饋,結合正念訓練於智慧型手機及可穿戴式設備偵測,設計一套運行在智慧型手機上,輔助使用者進行日常正念訓練的回饋系統(該系統稱作正念訓練回饋系統,Mindfulness Feedback Interface,簡稱為MFI),提供學習回饋,輔助使用者在日常生活中完成更好的自我訓練、自我調節,提高正念訓練的學習效果,從而幫助使用者緩解日常生活中的各種壓力,達到放鬆平靜的目的。該回饋系統(MFI)功能包括:指導使用者在日常生活中完成正念訓練、提供正念訓練課程,訓練過程中生理狀態及心理狀態的偵測與回饋、使用者日常訓練狀態的記錄、與其它使用者的訓練結果的比較、以及專家建議等。
    本研究發展的方法,首先經文獻回顧完成設計架構及原型(MFI 1.0),接著進行專家評估,邀請相關不同領域的專家(包括臨床心理學、生物回饋偵技術、應用軟體開發及介面設計)檢視該系統原型。主要改良議題就系統設計中功能、視覺及互動設計提出改進意見及建議(例如:系統架構不清晰、功能缺失)。基於專家評估與建議,我們改良系統的介面設計並製作了可在手機上操作的系統原型(MFI 2.0)。隨後,我們邀請使用者進行MFI 2.0原型測試,收集使用者經驗,進一步發現系統設計上存在的問題(如:說明信息缺失、訓練步驟繁瑣),為系統操作體驗上的優化提出合理的意見及建議。
    本研究的主要成果包括:1)提出「正念訓練生物回饋介面(MFI)」系統整合的原型設計 ,作為使用者的生物狀態及心理狀態為一體的訓練回饋系統,該系統為一款可以運行在智慧型手機上的應用程式,它將輔助使用者在日常生活中完成正念訓練。2)MFI是一套運行在雲端的後台管理系統,該系統可以幫助正念研究人員開發、修改正念課程,並且可以了解使用者的訓練狀態,追蹤訓練效果。3)整合跨領域研究開發團隊(來自臨床心理學、生物回饋技術以及介面設計的專家),提高回饋系統的功能完備性。4)整合專家與使用者的原型測試,以優化設計及指出未來發展的項目。

    In stressful and competitive modern life, people eagerly seek for ways to reduce stress, enhance their self-awareness, and pursuit of health and happiness. “Mindfulness training”, as one of promising solutions for stress management and clinical treatment, mindfulness exercises are now increasing important and becoming the focus of research and development for this end. With the end to enhance the learning effect of mindfulness training in portable device, this research collaborated with clinical psychologists of mindfulness training to develop a feedback system which provides a timely and accurate learning feedback that help users of self-learning of smartphones and wearable devices. Based on the literature review, we found that the effect of mindfulness training could be reflected in the changes of user's physiological and psychological state. Besides, with the development of smartphones and wearable devices, users nowadays are ready for a professional health management device portable at any time and everywhere, in order to track their mindfulness training in the daily life. To this end, this research aims to develop the Mindfulness training feedback system (Aka Mindfulness Feedback Interface, MFI) on smartphones to help users better self-training and self-regulation with immediate and useful feedback then better improve the mindfulness training effect. The functionalities of MFI system include Mindfulness training, biological (EEG and HRV) and psychological (Self-report and questionnaire) feedback, training tracking and medical advices. Based literature review, we design and develop first prototype (MFI 1.0) with which we gathered suggestions from experts in relevant fields (mindfulness training experts, biofeedback technology developers, application developer and interface designers). Based on their suggestions, we developed an upgraded 2nd prototype (MFI 2.0), which can be tested on a smartphone. We invited six users to test this prototype for ensuring the usability, desirability and feasibility of the system and design issues for better future development. The development of MFI in this research has several contributions as follows. First, MFI proposed a comprehensive model for a mindfulness training feedback system that includes biological and psychological feedback operate in a smartphone and assist the user do the mindfulness training in their daily life. Second, the proposed MFI provides an interactive management system that allows researchers to develop and modify mindfulness courses, and to track the user's training effectiveness. Third, we benefit from interdisciplinary collaboration with experts from clinical psychology, biofeedback technology, and interface design that contribute a comprehensive system design. Finally, we conclude a better model of mindfulness training feedback system with user experience from user testing of usability, desirability and feasibility of the system.

    摘要 i Abstract iii 誌謝 v Table of Contents vii List of Figures xii List of Tables xv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Objective 2 1.3 Research Questions 3 Chapter 2 Literature Review 5 2.1 Mindfulness Definition and Training Course 6 2.2 Feedback for Learning 11 2.3 Biofeedback for Mindfulness 12 2.3.1 Brainwaves (EEG) 13 2.3.2 Breathing 16 2.3.3 Heart Rate Variability (HRV) 17 2.3.4 Surface Electromyography (sEMG) 18 2.3.5 Temperature 19 2.3.6 Summary of Biofeedback for Mindfulness 20 2.4 Current Biofeedback Interface Design 23 2.4.1 Raw data in HCI 24 2.4.2 Meaningful Information in the HCI 24 2.4.3 Instructive Information in the HCI 27 2.4.4 Summary of Biofeedback Interface Design 28 2.5 Summary of Literature Review 31 Chapter 3 Methodology 33 3.1 Interdisciplinary Collaboration 33 3.2 Research Method 35 Chapter 4 Design for MFI 1.0 38 4.1 Mindfulness Biofeedback Interface (MBI) Design Model 38 4.1.1 Conceptual Design for MBI System 41 1) Hot-air Balloon (Breathing Training) 42 2) Yin-Yang (Concentration Training) 43 4.1.2 Conclusion for Concept Design of MBI 44 4.2 Mindfulness Feedback Interface Design Model (From MBI to MFI) 45 4.2.1 User Definition 47 4.2.2 Interface and Prototype Design for MFI 1.0 49 4.3 Expert Evaluation for MFI 1.0 67 4.3.1 The Participants of Expert Evaluation 67 4.3.2 The Method of Expert Evaluation 68 4.3.3 The Findings in the Expert Evaluation 69 1) Clear Product Positioning 71 2) Independent Develop Biofeedback Detector 71 3) The Rationality of Course Structure 73 4) Diversity of Training Courses 73 4.3.4 Summary of Expert Evaluation 74 Chapter 5 Advanced Design of MFI 2.0 78 5.1 Interface Design for MFI 2.0 78 5.1.1 Information Architecture Adjustment 79 5.1.2 Simplify the Interface Operation Flow 80 5.1.3 Improved User Friendliness for Novice 84 5.1.4 Designed for Different Users 87 5.2 User Testing for MFI 2.0 88 5.2.1 The Participants of User Testing 89 5.2.2 The Method of User Testing 90 5.2.3 The Findings in the User Testing 91 1) Security Issues 92 2) More Explanation 92 3) More Tutorials 93 5.2.4 Summary of User Testing 93 Chapter 6 Conclusion 94 6.1 Research Contribution 94 6.1.1 A Comprehensive Model for A Mindfulness Training Feedback System 94 6.1.2 An Interactive Background Management System 95 6.1.3 Interdisciplinary Collaboration 96 6.1.4 Advancing Model of Mindfulness Training Feedback System 96 6.2 Research Limitations 97 6.3 Future Directions 97 6.3.1 Mindfulness State Definition 97 6.3.2 Big Data Analysis 98 6.3.3 Multiple Training Courses 99 6.3.4 Independent Develop Biofeedback Detector 99 Reference 100 Appendix 1: The Feedback from Experts 104 Appendix 2: The Transcript of Interview After User Testing 106 Appendix 3: The Example of Psychological Scales 114 Appendix 4: The Interface Design for MFI System (MFI 1.0) 115 Appendix 5: The Interface Design for MFI System (MFI 2.0) 128

    Baer, R. A. (2003). Mindfulness training as a clinical intervention: A conceptual and empirical review. Clinical psychology: Science and practice, 10(2), 125-143.
    Baxter, K. K., Avrekh, A., & Evans, B. (2015, April). Using Experience Sampling Methodology to Collect Deep Data About Your Users. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors in Computing Systems (pp. 2489-2490).
    Bergomi, C., Tschacher, W., & Kupper, Z. (2013). The assessment of mindfulness with self-report measures: Existing scales and open issues. Mindfulness, 4(3), 191-202.
    Bishop, S. R., Lau, M., Shapiro, S., Carlson, L., Anderson, N. D., Carmody, J., ... & Devins, G. (2004). Mindfulness: A proposed operational definition. Clinical psychology: Science and practice, 11(3), 230-241.
    Cahn, B. R., & Polich, J. (2006). Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychological bulletin, 132(2), 180.
    Carter, B. L., Day, S. X., Cinciripini, P. M., & Wetter, D. W. (2007). Momentary health interventions: where are we and where are we going. The science of real-time data capture. Self reports in health research, 289-307.
    Chang, K. I., Tsai, M. Y., Su, Y. J., Chen, J. L., & Wu, S. M. (2011, January). Flow of qi: system of real-time multimedia interactive application of calligraphy controlled by breathing. In International Conference on Multimedia Modeling (pp. 432-441). Springer Berlin Heidelberg.
    Davidson, R. J., Kabat-Zinn, J., Schumacher, J., Rosenkranz, M., Muller, D., Santorelli, S. F., ... & Sheridan, J. F. (2003). Alterations in brain and immune function produced by mindfulness meditation. Psychosomatic medicine, 65(4), 564-570.
    Floridi, L. (2005). Is semantic information meaningful data?. Philosophy and Phenomenological Research, 70(2), 351-370.
    Hạnh, N. (1987). The miracle of mindfulness: a manual on meditation. Beacon Pr.
    Hattie, J., & Timperley, H. (2007). The power of feedback. Review of educational research, 77(1), 81-112.
    Katona, J., Farkas, I., Ujbanyi, T., Dukan, P., & Kovari, A. (2014, January). Evaluation of the NeuroSky MindFlex EEG headset brain waves data. In Applied Machine Intelligence and Informatics (SAMI), 2014 IEEE 12th International Symposium on (pp. 91-94). IEEE.
    Kabat-Zinn, J., Lipworth, L., & Burney, R. (1985). The clinical use of mindfulness meditation for the self-regulation of chronic pain. Journal of behavioral medicine, 8(2), 163-190.
    Kabat‐Zinn, J. (2003). Mindfulness‐based interventions in context: past, present, and future. Clinical psychology: Science and practice, 10(2), 144-156.
    Khazan, I. Z. (2013). The clinical handbook of biofeedback: A step-by-step guide for training and practice with mindfulness. John Wiley & Sons.
    Krygier, J. R., Heathers, J. A., Shahrestani, S., Abbott, M., Gross, J. J., & Kemp, A. H. (2013). Mindfulness meditation, well-being, and heart rate variability: a preliminary investigation into the impact of intensive Vipassana meditation. International Journal of Psychophysiology, 89(3), 305-313.
    Lee, D., & Dwyer, F. M. (1994). The Effect of Varied Feedback Strategies on Students' Cognitive and Attitude Development. International Journal of Instructional Media, 21(1), 13-21.
    Mihajlović, V., Grundlehner, B., Vullers, R., & Penders, J. (2015). Wearable, wireless EEG solutions in daily life applications: what are we missing?. IEEE journal of biomedical and health informatics, 19(1), 6-21.
    Othmer, S., Othmer, S. F., & Marks, C. S. (1991). EEG biofeedback training for attention deficit disorder, specific learning disabilities, and associated conduct problems. EEG Spectrum.
    Sliwinski, J., Katsikitis, M., & Jones, C. M. (2015, September). Mindful Gaming: How Digital Games Can Improve Mindfulness. In Human-Computer Interaction (pp. 167-184). Springer International Publishing.
    Tanay, G., & Bernstein, A. (2013). State Mindfulness Scale (SMS): development and initial validation. Psychological assessment, 25(4), 1286.
    Brainlink. [Online]. Available: http://www.macrotellect.com/
    Brainwave Zen Lamp. [Online]. Available: http://www.braincorner.com.tw/en/?product=zen_lamp
    EMOTIV Epoc+. [Online]. Available: https://www.emotiv.com/epoc/
    EMOTIV Insight. [Online]. Available: https://www.emotiv.com/insight/
    Hardware for HRV: what sensor should you use? Available: http://www.hrv4training.com/blog/hardware-for-hrv-what-sensor-should-you-use
    Melon. [Online]. Available: http://www.thinkmelon.com/
    Muse. [Online]. Available: http://www.choosemuse.com/
    Visualizer 2.0. [Online]. Available: http://store.neurosky.com/products/visualizer-2-0
    What UI/UX Designers Should Know About Prototyping Tool. [Online]. Available: http://www.uxness.in/2016/03/Know-About-Prototyping-Tool.html
    Why You Only Need to Test with 5 Users? Available: https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE