簡易檢索 / 詳目顯示

研究生: 邱雯瑩
Chiu, Wen-Ying
論文名稱: 人工主動脈心瓣之流場特性
Flow Characteristics of Prosthetic Aortic Heart Valve
指導教授: 陸鵬舉
Lu, Pong-Jeu
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 66
中文關鍵詞: 性能測試流場特性有效孔徑面積人工瓣膜
外文關鍵詞: characteristics maps, Cd, EOA, Prosthetic heart valve, Medtronic Hall valve
相關次數: 點閱:136下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗方法測試人工瓣膜流場性能,探討單葉人工瓣膜於不同葉瓣開口角度及不同流量下的壓力損失特性,以提供人工心臟系統動力模型建立與控制律設計之用。人工瓣膜流場特性圖的製作是在擬定常(Quasi-steady)假設下繪製而成,圖中每條特性曲線均為在定常流場(Steady flow)的情況下所量測到的流場參數。在本研究中採用兩個不同尺寸的Medtronic Hall valve(Model A7700)作為測試之用,分別為27AHK(孔徑直徑22mm)及29AHK(孔徑直徑24mm)。由所得之特性圖可知在同一葉瓣開口角度下的特性曲線其壓力損失隨著流量增加而增加,且在同一流量下,壓損隨著葉瓣開口角度的減少而增加。在本研究中主要以瓣膜孔徑有效面積(Effective Orifice Area, EOA)及Discharge Coefficient 作為分析人工瓣膜性能之依據。研究結果分別獲得MH-27AHK與MH-29AHK之EOA為2.90 cm2及3.55 cm2,及其Discharge Coefficient分別為0.76及0.78。

    This research focuses on the performance evaluation of two monoleaflet prosthetic aortic heart valves. Flow characteristics in terms of pressure drop for these prosthetic heart valves at different opening angles and flow rates are studied. These results will be used to construct the dynamic model and to design the control law of an artificial heart system. The flow characteristics maps of the valves are constructed under the quasi-steady assumption. Each characteristic curve is obtained from a steady-state measurement. In this study, we use two Medtronic Hall valves (Model A7700) as the testing subjects, each with 22mm (27AHK) and 24mm (29AHK) in diameter, respectively. The results show that the pressure drop across the valve is in proportion to the flow rate, which increases with the increased flow rate for the same occluder opening angle. Under the same flow rate condition, however, the pressure drop increases as the opening angle decreases. Flow performance of the prosthetic valves is measured using the parameters of effective orifice area (EOA) and discharge coefficient . The results show that the EOAs of the MH-27AHK and MH-29AHK valves are 2.90 cm2 and 3.55 cm2, and the corresponding discharge coefficients are 0.76 and 0.78, respectively.

    中 文 摘 要 i 英 文 摘 要 ii 目 錄 iii 圖目錄 vi 表目錄 viii 符號說明 ix 第一章 緒 論 1   1-1 人工瓣膜簡介 1   1-2 文獻回顧 3   1-3 本文架構 4 第二章 實驗儀器設備 6   2-1 實驗設備簡介 6   2-2 量測設備 7     2-2-1 整流段 7     2-2-2 測試段 8     2-2-3 角度調整機構 9   2-3 量測儀器 10     2-3-1 壓力轉換器(Pressure Transducer) 10     2-3-2 流量計(Flow Meter) 10   2-4 資料擷取系統 11     2-4-1 數據擷取軟體介面 11   2-5 實驗量測步驟與方法 12     2-5-1 葉瓣開口角度的計算 13     2-5-2 壓力量測與壓力轉換計校驗 14 第三章 管流理論介紹 15   3-1 參數依據 15   3-2 理論背景 16   3-3 有效的孔徑面積(Effective Orifice Area) 20 第四章 實 驗 數 據 分 析 22   4-1 測試瓣膜的特性曲線 22   4-2 黏滯影響下之瓣膜特性曲線 23   4-3 有效孔徑面積的分析 24 第五章 結 論 26   5-1 結論 26   5-2 未來展望 27 參 考 文 獻 29 附 圖 33 附 表 57

    [1] 潘震澤等,”人體生理學第七版”,合計圖書出版社,2001年七月。

    [2] Gabbay, S., Yellin, E. L., Mcqueen, D. M., Becker, R. M., and Frater, R. W. M., 1978, “In Vitro Hydrodynamic Comparison of Mitral Valve Prostheses at High Flow Rates,” Journal of Thoracic and Cardiovascular Surgery, Vol. 76, No. 6, pp. 952-961.

    [3] Peskin, C. S., 1982, “The Fluid Dynamics of Heart Valves: Experimental, Theoretical, and Computational Methods,” Annual Reviews Fluid Mechanics, 14,pp. 235-259.

    [4] Clark, C.,1976, “The Fluid Mechanics of Aortic Srenosis : Ⅰ.Theory and Steady Flow Experiments,” Journal of Biomechanics, Vol. 9, pp. 521-528.

    [5] Yoganathan, A. P., Sung, H. W., and Williams, F. P., 1988, “Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques,” Journal of the American College of Cardiology, Vol.12, No. 5, pp. 1344-1353.

    [6] Knott, E, Reul, H., Knoch, M., Steinseifer, U., Rau, G., 1988, “In-Vitro Comparison of Aortic Heart Valve Prostheses PartⅠ:Mechanical Valves,” Journal of Thoracic and Cardiovascular Surgery, 96, pp. 952-961.

    [7] Clark, C., 1979, “Energy Losses In Flow Through Stenosed Valves,” Journal of Biomechanics, Vol.12, pp. 737-746.

    [8] Olin, C., 1971, “Pulsatile Flow Studies of Prosthetic Aortic Valve,” Scandinavian Journal of Thoracic and Cardiovascular Surgery, Vol. 5, pp. 1-12.

    [9] Gorlin, R., Gorlin, SG., 1951, “Hydraulic Formula for Calculation of the Area of the Stenotic Mitral Valve, other Cardiac Valves, and Central Occluding Shunts,” The American Heart Journal, Vol. 41, pp. 1-29.

    [10] Lu, P. C., Weng, J. H., and Chu, S. H., 1999, “Measurement of Retrograde Flow Field of Bileaflet Artificial Heart Valves,” Biomedical Engineering Applications Basis and Communication, 11, pp.11-18.

    [11] Lu, P. C., Weng, J. H., and Chu, S. H., 1999, “Experiments on Flow Inside Enlarged Models of Bileaflet Artificial Heart Valves,” Biomedical Engineering Applications Basis and Communication, 11, pp. 139- 147.

    [12] Gao, B. Z., Hoseiz, N., and Hwang N. H. C., 1997, “Hydrodynamics of Lonf-Body Bileaflet Mechanical Heart Valve,” Journal ASAIO, 43: M396-M401.

    [13] Voelker, W., et al., 1992, “Pressure Recovery in Aortic Stenosis: An In Vitro Study in a Pulsatile Flow Model,” Journal of the American College of Cardiology, Vol. 20, No. 7, pp. 1585- 1593.

    [14] Hasenkam, J. M., Nygaard, H., Giersiepen, M., and Reul, H., et al., 1988, “Turbulent Stress Measurement Downstream of six Mechanical Valves in A Pulsatile Flow Model,” Journal of Biomechanics, Vol. 21, No. 8, pp. 631- 645.

    [15] Hasenkam, J. M., Giersiepen, M., and Reul, H., 1988,“Three – Dimensional Visualization Velocity Fields Downstream of six Mechanical Aortic Valves in a Pulsatile Flow Model,” Journal of Biomechanics, Vol. 21, No. 8, pp. 647- 661.

    [16] Van Steenhoven, A. A., Van Dongen, M. E. H., 1979, “Model Studies of the Closing Behaviour of the Aortic Valve,” Journal of Fluid Mechanics, Vol. 90, pp. 21-32.

    [17] Yoganathan, A. P., Williams, F. P., and Corcoran, 1979, “Pressure Drops Across Prosthetic Aortic Heart Valves under Steady and Pulsatile Flow― In Vitro Measurements,” Journal of Biomechanics, Vol. 12, pp. 153- 164.

    [18] Vongpatanasin, W., Hills, L. D., and Richard, A. L., 1996, “Prosthetic Heart Valves”, The New England Journal of Medicine, Vol. 335, No. 6, pp. 407- 416.

    [19] Flachskampf, F. A., et al., 1990, “Influence of Orifice Geometry and Flow Rate on Effective Valve Area: An In Vitro Study,” Journal of the American College of Cardiology, Vol. 15, No. 5, pp. 1173- 1180.

    [20] Gabbay, S., Mcqueen, D. M., Yellin, E. L., and Frater, R. W. M., 1979, “In Vitro Hydrodynamic Comparison of Mitral Valve Bioprostheses,” Supplement 1 Circulation, Vol. 60, No. 2, pp. I-62- I-70.

    [21] Schoephoerster, R., et al., 1989, “Prediction of Stenotic Valve Orifice Area: An In Vitro Study on a Bioprosthesis,” Catheterization and Cardiovascular Diagnosis, Vol. 18, pp. 36-47.

    [22] Heinrich, R. S., et al., 1996, “Experimental Analysis of Fluid Mechanical Energy Losses in Aortic Valve Stenosis: Importance of Pressure Recovery,” Annals of Biomedical Engineering, Vol. 24, pp.685- 694.

    [23] 黃建雄,”人工心臟液壓泵的性能測試”, 成功大學航空太空工程研究所論文,2000年七月。

    [24] 張妙華,”全人工心臟控制閥門流場分析”,成功大學航空太空工程研究所論文,2000年一月。

    [25] “Figure for human heart,” URL:http://www.heartcenteronline.com/.

    下載圖示 校內:立即公開
    校外:2002-07-17公開
    QR CODE