| 研究生: |
許傑丞 Syu, Jie-Cheng |
|---|---|
| 論文名稱: |
Mg-1Ca-0.5Zr合金機械性質與表面腐蝕機制探討 A Study on Mechanical Properties and Surface Corrosion Mechanism of Mg-1Ca-0.5Zr Alloy |
| 指導教授: |
洪飛義
Hung, Fei-Yi 呂傳盛 Lui, Truan-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | Mg-Ca-Zr 、機械性質 、磨耗 、腐蝕 |
| 外文關鍵詞: | Mg-Ca-Zr, mechanical properties, erosion, corrosion |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎂合金作為生醫植入材料具有非常多的優點,例如:其機械性質相較於鈦合金、不鏽鋼等更加接近骨骼。此外,鎂合金在人體內可進行降解,植入物不需進行二次開刀取出,減輕病人的痛苦以及負擔,而且鎂合金降解所產生的鎂離子也能幫助骨骼的生成,加速患部的恢復。現今所使用的鎂鋁鋅合金,生醫相關研究指出鋁具有神經毒性,因此本研究添加鈣以及鋯強化鎂合金的機械性質與抗腐蝕性,研製Mg-1Ca-0.5Zr合金並探討其機械性質與表面腐蝕機制。
本研究選用擠型鎂鈣鋯合金以400℃進行均質化處理,並解析材料不同方向的機械強度,利用拉伸測試、破壞韌性以及沖蝕磨耗測試進行機械性質分析。為了提高細胞的附著性,導入顆粒沖蝕表面磨耗試驗檢討熱處理材與粗化處理材之表面抗腐蝕機制。
實驗結果顯示,均質化處理能有效提升材料延性,材料在垂直擠型方向拉伸具有較高的強度,但是延性較低。破壞韌性也顯示垂直擠型方向的破壞特徵主要為脆性主導的沿晶破壞。顆粒沖蝕磨耗測試顯示均質後之鎂鈣鋯合金硬度下降且延性上升,使得最大磨耗率角度往低沖蝕角度偏移。
均質化處理基地中第二相較均勻分布,可降低材料表面的腐蝕電位差並有效提高抗腐蝕性。經過粗化處理,因表面積提高,腐蝕速率明顯上升。再者,粗化表面因為較不平整,由極化曲線確認不會形成鈍化層。
浸泡實驗顯示粗化處理可提高表面積,加上材料表面孔洞生成而加速孔蝕發生,導致材料腐蝕速率提升,並在材料表面生成大量氫氧化鎂。此外,在平滑表面可以觀察到磷酸鈣層貼附,該磷酸鈣層具有降低鎂合金腐蝕速率功效。
Magnesium alloys as a biomaterial is very outstanding. Magnesium mechanical properties is close to nature bones, besides it is biodegradable in human body. Currently, the studies are mainly focus on Mg-Al-Zn alloys. However, researches shows that Al element can cause nerve toxicity. Calcium is one of major elements in bones and zirconium is very powerful grain refinement. Hence, we develop Mg-1Ca-0.5Zr alloy for biodegradable biomaterial, and study mechanical properties and surface corrosion mechanism.
The result shows that after heat treatment second phase distribute evenly. Tensile test shows that after heat treatment can increase ductility. ED shows better ductility than TD because fiber texture and extrusion characteristic. Electrochemistry test shows that H has lowest corrosion rate with F and pure magnesium. H produce calcium phosphate layer after immersion in SBF, it can protect Mg form corrosion. Study shows that surface roughen is harmful to corrosion resistance. Surface roughen cause a lot hole on surface it will promote pitting corrosion.
1. Staiger, M.P., Pietak, A.M., Huadmai, J., Dias, G., Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials, 2006. 27(9): pp. 1728-1734.
2. Gu, X.N., Li, S.S., Li, X.M., Fan, Y.B., Magnesium based degradable biomaterials: A review. Frontiers of Materials Science, 2014. 8(3): pp. 200-218.
3. Qizhi, C. and T.G. A., Metallic implant biomaterials. Materials Science and Engineering: R: Reports, 2015. 87: pp. 1-57.
4. Chien, C., Surface Microstructure and Bioactivity of Hydroxyapatite and Fluorapatite Coatings Deposited on Ti-6Al-4V Substrates Using Nd-YAG Laser. Journal of Medical and Biological Engineering, 2014. 34(2): p. 109.
5. Hench, L.L. and J.M. Polak, Third-Generation Biomedical Materials. Science, 2002. 295: pp. 1014-1017.
6. Alvarez, L., M., Pereda, M. D., del Valle, J. A., Fernandez, L.M., Garcia, A.M.C., Ruano, O. A., Escudero, M. L., Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater, 2010. 6(5): pp. 1763-1771.
7. Kojima, Y., Platform Science and Technology for Advanced Magnesium Alloys. Materials Science Forum, 2000. 350-351: pp. 3-18.
8. Musso, C.G., Magnesium metabolism in health and disease. Int Urol Nephrol, 2009. 41(2): pp. 357-362.
9. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride. 1999, Washington, DC,: National Academy of Sciences.
10. Arthur Marx, R.R.N., Magnesium in Drinking Water and Ischemic Heart Disease. Epidemiologic Reviews, 1997. 19(2): pp. 258-272.
11. Okuma, T., Magnesium and Bone Strength. Nutrition, 2001. 17(7-8): pp. 679-680.
12. Shils, M. E., Magnesium in Health and Disese. Annual Reviews, 1988. 8: pp. 429-460.
13. Song, G., Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007. 49(4): pp. 1696-1701.
14. Jochem Nagels, M. S., and Piet M. R., Stress shielding and bone resorption in shoulder. Journal of Shoulder and Elbow Surgery, 2003. 12(1): pp. 35-39.
15. Jurgen, V., Magnesium nutrition and metabolism.pdf. Molecular Aspects of Medicine, 2003. 24: pp. 27-37.
16. Lin, D.J., Hung, F. Y., Jakfar, S., Yeh, M.L., Tailored coating chemistry and interfacial properties for construction of bioactive ceramic coatings on magnesium biomaterial. Materials & Design, 2016. 89: pp. 235-244.
17. Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., Windhagen, H., In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005. 26(17): pp. 3557-3563.
18. Pietak, A., Mahoney, P., Dias, G. J., Staiger, M. P., Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci Mater Med, 2008. 19(1): pp. 407-415.
19. Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U., Willumeit, R., Feyerabend, F., Degradable biomaterials based on magnesium corrosion. Current Opinion in Solid State and Materials Science, 2008. 12(5-6): pp. 63-72.
20. Song, G. and S. Song, A Possible Biodegradable Magnesium Implant Material. Advanced Engineering Materials, 2007. 9(4): pp. 298-302.
21. Ling, S.G. and S.S. Zhe, Corrosion Behaviour of Pure Magnesium in a Simulated Body Fluid. Acta Phys Chim Sin, 2006. 22(10): pp. 1222-1226.
22. Yansong, H., Yang, K., Zhang, G.D., Huang, J.J., Hao, Y.Q., Al H.J., The role of Bone induction of a biodegradable magnesium alloy. Acta metallurgica Sinica 2008. 44: pp. 1035-1041.
23. M. M. Avedesian, H.B., ASM Specialty Handbook: Magnesium and Magnesium Alloys. 1999: pp. 13-43.
24. Michael R. Notis, J.B., Cathleen M. Cotell, ASM Metals Handbook-Alloy Phase Diagrams. Vol. 3. 1992: ASM Int.
25. Harandi, S.E., M. Hasbullah Idris, and H. Jafari, Effect of forging process on microstructure, mechanical and corrosion properties of biodegradable Mg–1Ca alloy. Materials & Design, 2011. 32(5): pp. 2596-2603.
26. Du, H., Wei, Z.J., Liu, X.W., Zhang, E.L., Effects of Zn on the microstructure, mechanical property and bio-corrosion property of Mg–3Ca alloys for biomedical application. Materials Chemistry and Physics, 2011. 125(3): pp. 568-575.
27. Kannan, M.B. and R.K. Raman, In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials, 2008. 29(15): pp. 2306-2314.
28. Lin, D.J., Hung, F. Y., Lui, T. S., Yeh, M. L., Heat treatment mechanism and biodegradable characteristics of ZAX1330 Mg alloy. Mater Sci Eng C Mater Biol Appl, 2015. 51: pp. 300-308.
29. Li, Z., Gu, X., Lou, S., Zheng, Y., The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials, 2008. 29(10): pp. 1329-1344.
30. I. Antoniac, M.D., Microstructural and Mechanical Features of MgCa Alloys. E-Health and Bioengineering, 2011: pp. 1-4.
31. Jeong, Y.S. and W.J. Kim, Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion. Corrosion Science, 2014. 82: pp. 392-403.
32. Kim, W.C., Kim, J.G., Lee, J.Y., Seok, H.K., Influence of Ca on the corrosion properties of magnesium for biomaterials. Materials Letters, 2008. 62(25): pp. 4146-4148.
33. Zheng, Y.F., Gu, X. N., Xi, Y. L., Chai, D. L., In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta Biomater, 2010. 6(5): pp. 1783-1791.
34. Qian, M., Heterogeneous nuclei size in magnesium–zirconium alloys. Scripta Materialia, 2004. 50(8): pp. 1115-1119.
35. Liu, G.-L., The electronic structure of the microstructure of Mg-Zr alloys. Acta Phys. Sin., 2008. 57(2): pp. 1043-1047.
36. Gu, X., Zheng, Y.F., Cheng, Y., Zhong, S.P., Xi, T.F., In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009. 30(4): pp. 484-498.
37. Neil, W.C., Forsyth, M., Howlett, P. C., Hutchinson, C. R., Hinton, B. R. W., Corrosion of magnesium alloy ZE41 – The role of microstructural features. Corrosion Science, 2009. 51(2): pp. 387-394.
38. Griffith, A.A., The Phenomena of Rupture and Flow in Solids. Phil. Trans, 1921. 221: pp. 163-197.
39. Irwin, G.R., Linear fracture mechanics, fracture transition, and fracture control. Engineering Fracture Mechanics, 1968. 1(2): pp. 241-257.
40. 阿部武治 and 劉松柏編譯, 材料強度破壞學. 民國89.
41. ASTM-E399‚ “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”. 1997. 2: pp. 413-443.
42. Winter, R.E. and I.M. Hutchings, Particle erosion of ductile metals A mechanism of material removal. Wear, 1975. 34: pp. 141-148.
43. Bahadur, S. and R. Badruddin, Erodent particle characterization and the effect of particle size and shape on erosion. Wear, 1990. 138(1-2): pp. 189–208.
44. Adler, W.F., Analytical modeling of multiple particle impacts on brittle materials. Wear, 1976. 37: p. 353-364.
45. Magnee, A., Generalized law of erosion : application to various alloys and intermetallics. Wear, 1995. 181-183: pp. 500-510.
46. 洪飛義, 矽含量及基地組織對球墨鑄鐵顆粒沖蝕磨耗行為之影響. 國立成功大學材料科學及工程研究所博士論文, 民國91年9月.
47. Yang, G.L., He, F. M., Yang, X. F., Wang, X. X., Zhao, S. F., Bone responses to titanium implants surface-roughened by sandblasted and double etched treatments in a rabbit model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008. 106(4): pp. 516-524.
48. Levy, A.V., The platelet mechanism of erosion of ductile metals. Wear, 1986. 108(1): pp. 1-21.
49. Oyane, A., Kim, H.M., Furuya, T., Kokubo, T., Miyazaki, T., Nakamura, T., Preparation and assessment of revised simulated body fluids. J Biomed Mater Res A, 2003. 65(2): pp. 188-195.
50. Zeng, R.C., Qi, W.C., Cui, H.Z., Zhang, F., Li, S.Q., Han, E.H., In vitro corrosion of as-extruded Mg–Ca alloys—The influence of Ca concentration. Corrosion Science, 2015. 96: pp. 23-31.
51. Wang, C.Q., Sun, M., Zheng, F.Y., Peng, L.M., Ding, W.J., Improvement in grain refinement efficiency of Mg–Zr master alloy for magnesium alloy by friction stir processing. Journal of Magnesium and Alloys, 2014. 2(3): pp. 239-244.
52. Zhou, Y.L., Li, Y., Luo, D.M., Wen, C., Hodgson, P., Microstructures, mechanical properties and in vitro corrosion behaviour of biodegradable Mg–Zr–Ca alloys. Journal of Materials Science, 2012. 48(4): pp. 1632-1639.
53. Hagihara, K., Fujii, K., Matsugaki, A., Nakano, T., Possibility of Mg- and Ca-based intermetallic compounds as new biodegradable implant materials. Mater Sci Eng C Mater Biol Appl, 2013. 33(7): pp. 4101-4111.
54. Höh, N.V.D., Bormann, D., Lucas, A., Denkena, B., Hackenbroich, C., Meyer-Lindenberg, A., Influence of Different Surface Machining Treatments of Magnesium-based Resorbable Implants on the Degradation Behavior in Rabbits. Advanced Engineering Materials, 2009. 11(5): pp. 47-54.
55. Song, Y.W., D.Y. Shan, and E.H. Han, Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Materials Letters, 2008. 62(17-18): pp. 3276-3279.
56. Zhang, C.Y., Gao, J.C., Zeng, R.C., Liu C.L., Wu X., Wu D.,Corrosion behavior of magnesium alloy AZ31 with calcium phosphate coating in hank's solition. Journal of the chinese ceramic society, 2010. 38(5): pp. 885-891.
校內:2019-07-29公開