| 研究生: |
陳智瑋 Chen, Chih-Wei |
|---|---|
| 論文名稱: |
含電極之半平面壓電材料受廣義集中力作用之問題 Problem of piezoelectric half-plane containing an electrode subjected to a generalized concentrated force |
| 指導教授: |
宋見春
Sung, Jen-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 半平面 、壓電材料 、電極 、集中力 |
| 外文關鍵詞: | half-plane, piezoelectric, electrode, concentrated force |
| 相關次數: | 點閱:67 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文針對含電極之半平面橫向等向性壓電材料受廣義集中力作用之問題進行探討。此問題可由半平面壓電材料內之電極位置上施加一未知廣義分佈力函數,並滿足電極軸向應變和等於零之邊界條件來模擬。將未知廣義分佈力函數沿著電極位置積分,並滿足邊界條件得到本文問題之柯西型奇異積分方程式,再搭配輔助方程式,即可求得此未知廣義分佈力函數。本文採用Gerasoulis(1982)的數值方法求廣義分佈力函數的數值解,進而求得電極尖端的廣義應力強度因子,即開裂型、滑移型、撕裂型及電位移應力強度因子。而數值分析中探討的材料為橫向等向性壓電材料,針對不同的電極旋轉角度、不同的電極深度及不同的集中力角度進行面內效應分析,對半平面邊界效應及彈電耦合效應也有討論。
In the present thesis, the problem of piezoelectric half-plane containing an electrode subjected to a generalized concentrated force is considered. This problem is analyzed by distributing unknown generalized distributed forces on the position of the electrode subjected to satisfaction of the boundary conditions. Based on the generalized Stroh(1958) formalism, the unknown generalized distributed forces can be formulated in terms of Cauchy-type singular integral equations. By using the numerical method proposed by Gerasoulis(1982), we can get not only the numerical solution of the unknown generalized distributed forces but the traction field of the problem. The traction at the tip of the electrode is what we are most concerned about. Because of the singularity of stress at the tip, the Generalized Stress Intensity Factors(GSIFs) are considered. There are four type of the GSIFs: open mode, sliding mode, tearing mode and electric displacement intensity factor. The piezoelectric ceramic material PZT-6B is used to analyze the problem in the present studied. PZT-6B is transverse-isotropic material, hence, the in-plane effect and out-of-plane effect are decoupled. Therefore, only the in-plane effect is analyzed. The influences of the depth of electrode, the tilted angle of the generalized concentrated force and the direction of the electrode on the GSIFs are discussed in the last chapter. Additionally, the difference between piezoelectric material and pure-elastic material are also discussed in this study.
[1] Atkinson, C., “Some ribbon-like inclusion problems,” International Journal of Engineering Science, Vol.11, pp.243-266 (1973).
[2] Ballarini, R., “An integral equation approach for rigid line inhomogeneity problems,” International Journal of Fracture, Vol.33, pp.R23-R29 (1987).
[3] Chiang, C.R., “Some half-space problems of cubic piezoelectric materials,” International Journal of Solids and Structures , Vol.51, pp.1046–1051 (2014).
[4] England, A. H., “On stress singularities in linear elasticity,” International Journal of Engineering, Vol.9, pp.571-585 (1971).
[5] Eshelby, J. D., “The determination of the elastic field of an ellipsoidal inclusion, and related problems,” Proceedings of the Royal Society, Vol. 241A, pp. 376-396 (1957).
[6] Gerasoulis, A., “The use of piecewise quadratic polynomials for the solution of singular integral equations of Cauchy type,” Computational Mathematics with Appilcations, Vol.8, No.1, pp.15-22 (1982).
[7] Hwu, C. and Yen, W.J., “Green’s functionof two dimensional anisotropic plate containing an elliptic hole,” International Journal of Solids Structures, Vol.27, No.13, pp.1705-1719 (1991).
[8] Hwu, C., “Anisotropic Elastic Plates,” Springer, New York, pp.100-105 (2010).
[9] Lekhnitskii, S.G., “Theory of elasticity of anisotropic elastic body,” Holden-Day, San Francisco, California (1963).
[10] Li, Q. and Ting, T.C.T., “Line inclusion in anistropic elastic solids,” ASME Journal of Applied Mechanics, Vol.56, pp.556-563 (1989).
[11] Liu, J., Wang, B. and Du, S., “Electro-elastic green's functions for a piezoelectric half-space and their application,” Applied Mathematics and Mechanics, Vol.18, No.11, pp.1037-1043(1997).
[12] Lu, P. and Williams, F.W., “Green functions of piezoelectric material with an elliptic hole or inclusion,” International Journal of Solids Structures, Vol.35, No.7-8, pp.651-664 (1998).
[13] Muskhelishvili, N. I., “Some Basic Problems of Mathematical Theory of Elasticity,” Noordhoff (1953).
[14] Ou, Z.C. and Chen, Y.H., “Explicit expressions of eigenvalues and eigenvectors for transversely isotropic piezoelectric materials,” Acta Mechanica, Vol.162, pp.213-219 (2003)
[15] Radaj, D. and Zhang, S., “Analogies between crack tip and rigid line tip stresses and displacements,” Engineering Fracture Mechanics, Vol. 44, No. 6, pp. 913-919 (1993a).
[16] Radaj, D. and Zhang, S., “Loading modes and stress intensity factors at rigid layer edges,” Engineering Fracture Mechanics, Vol.46, No. 2, pp. 199-208 (1993b).
[17] Selvadurai, A.P.S., “The In-Plane Loading of a Rigid Disk Inclusion Embedded in an Elastic Half-Space,” Journal of Applied Mechanics, Vol.52, pp.362-369 (1991).
[18] Stroh, A.N., “Dislocations and cracks in anisotropic elasticity,” Philosophical Magazine, Vol.3, pp.625-646 (1958).
[19] Ting, T.C.T., “Anisotropic elasticity: theory and application,” Oxford University press (1996).
[20] Wang, Z. Y., Zhang, H. T. and Chou, Y. T., “Characteristics of the elastic field of a rigid line inhomogeneity,” Journal of Applied Mechanics, Vol.52,pp.818-822 (1985).
[21] Yang, P.S., Liou, J.Y. and Sung, J.C., “Analysis of a crack in a half-plane piezoelectric solid with traction-induction free boundary,” International Journal of Solids and Structures, Vol.44, pp.8556-8578 (2007).
[22] 莊祐霖,壓電材料內含孔洞與裂紋之互制分析,碩士論文,國立成功大學土木工程研究所,2015
[23] 林筠,線剛性介質在彈性體內脫層之應力分析,碩士論文,國立成功大學土木工程研究所,2016
[24] 許禮堯,電極與孔洞之彈電互制效應,碩士論文,國立成功大學土木工程研究所,2016