簡易檢索 / 詳目顯示

研究生: 吳宇婷
Wu, Yu-Ting
論文名稱: 以金屬氫氧化物模板法製備metal-silicate孔洞性複合材料之合成與應用
Synthesis and Application of Mesostructural Metal-Silicate Materials by Using Metal Hydroxide-Templating Method
指導教授: 林弘萍
Lin, Hong-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 112
中文關鍵詞: 金屬氫氧化物模板法metal-silicate中孔洞複合材料
外文關鍵詞: copper silicate, zinc silicate, iron silicate, metal hydroxide-templating
相關次數: 點閱:63下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在於,利用簡便的金屬氫氧化物模板法得到具有高表面積、高金屬氧化物分散性之metal-silicate中孔洞複合材料,並利用製備而得的材料探討其相關應用性。以往製備孔洞材料的研究中,常利用有機模板,藉由模板和生成物間的作用力,生成與模板具有相似結構之構型的材料,但必須利用酸洗或是高溫煅燒的方式來移除模板,實驗過程較為繁複且成本較高。本研究則先製備出金屬氫氧化物作為模板,再加入矽酸鈉或中孔洞氧化矽後使材料在鹼性環境下進行水熱反應,使矽酸鹽對金屬氫氧化物進行剝蝕之後再與其結合,且由於金屬氫氧化物和silicate兩者的晶格大小不同,重組後結構具有捲曲力,可形成具有特殊介尺度構型的metal-silicate。
    在實驗參數的調控方面,藉由改變水熱反應pH值、金屬氫氧化物模板熟化時間、水熱反應時間、金屬/氧化矽比例、反應濃度等實驗參數,控制實驗路徑及最佳合成條件,並發現此合成方式具有很好的再現性,在研究中,利用此金屬氫氧化物模板法可製得管狀之Cu-silicate、捲曲片狀之Zn-silicate材料及Fe-silicate複合材料。
    (1) Cu-silicate複合材料
    利用金屬氫氧化物模板法在pH ≈ 11.0的條件下,在100℃水熱一天後,矽酸鹽對層狀氫氧化銅模板進行剝蝕,可得具有特殊管狀結構的copper-silicate中孔洞複合材料,表面積約在400 m2/g。之後進一步利用共沉澱法將合成步驟簡化,並且引入銅離子廢液為前驅物,此實驗合成方式具有改善工業廢棄物汙染的潛力。因為手法簡易的優勢下,利於放大製程的操作,此類型之複合材料對於催化觸媒、工業上之有毒氣體(PH3或SiH4)吸附方面有顯著的效果,根據測試結果得知,在測試條件為通入流速0.22 m/min、濃度為694 ppm的SiH4時,材料的吸附效率為99.2%,且有效吸附量為 80 mg/g,可知有良好的吸附效果。接著利用簡易迴流的方式,以copper-silicate作為前驅物,加入有機分子BTC,合成出具有MOFs結構的Cu3(BTC)2- silicate複合材料,此材料對於溫室氣體SF6的吸附具有很好的攔截效果。
    (2) Zn-silicate複合材料
    利用金屬氫氧化物模板法在pH ≈ 8.0的條件下,100℃水熱一天後,可得具有片狀捲曲結構的Zn-silicate中孔洞複合材料,表面積約在230 m2/g。在應用上,將合成出的Zn-silicate複合材料吸附適當濃度的Mn2+後在900℃下煅燒,使其轉相為Zn2SiO4:Mn2+,具有放出綠色螢光的特性,在做為綠色螢光粉上有應用潛力。
    (3) Fe-silicate複合材料
    本實驗利用中孔洞氧化矽為氧化矽源,在水熱過程中氧化矽會溶出矽酸鹽,並且與氧化鐵進行重組,可得高氧化鐵含量(Fe/SiO2=1.6)、高表面積(約400 m2/g)且具有顆粒狀結構之Fe-silicate複合材料。另外為了拓展材料的應用性,引入亞鐵離子為前驅物,合成出具有磁性之Fe(Ⅱ)/(Ⅲ)-silicate。經過測試,此類材料對水中磷酸鹽有吸附效果。

    In this thesis, we provided a facile metal hydroxide-templating method to prepare mesostructural metal-silicate materials by hydrothermal treatment without any surfactants. To mimic the formation of the clay minerals in Nature, we prepared the metal hydroxide precipitation by adding appropriate amount of NaOH (aq) into metal salt aqueous solution, and then mixing the gel solution with sodium silicate aqueous solution. After hydrothermal treatment for an appropriate time, the mesoporous metal silicate was formed.The effect of pH, hydrothermal time, aging time and other experimental parameters were also discussed in this study. The resulted metal-silicate materials, including tubular copper silicate, sheet-like zinc silicate and granulated iron silicate have large surface areas and well dispersed metal oxide active sites. In practice, these metal silicate materials demonstrate high performances to be used as adsorbents of toxic gases, catalysts and phosphors.

    第一章 緒論 1 1.1 中孔洞材料 1 1.1.1 中孔洞材料介紹 1 1.1.2 中孔洞材料主要的研究範疇 2 1.2 矽酸鹽的化學概念 4 1.3 phyllosilicate介紹 6 1.4 Metal-Organic Frameworks (MOFs)介紹 7 1.4.1 Cu3(BTC)2(HKUST-l)結構介紹 7 1.5 結合金屬氧化物之中孔洞氧化矽材料合成 8 1.5.1 結合金屬氧化物複合材料的合成方法 9 1.6 廢氣處理 10 1.6.1 SiH4氣體的基本性質 10 1.6.2 SF6氣體的基本性質 11 1.6.3 局部廢氣處理設備去除廢氣之方法 11 1.6.4 處理氫化物系氣體之吸附劑 12 1.7 螢光材料的基本介紹 13 1.7.1 Zn2SiO4的介紹 14 1.7.2 光致發光原理 15 1.7.3 濃度淬減效應 16 1.8 研究動機 16 第二章 實驗部分及儀器設備介紹 17 2.1 實驗藥品 17 2.2 實驗步驟及流程示意圖 18 2.2.1 以金屬氫氧化物模板法製備中孔洞copper-silicate複合材料 18 2.2.2 以共沉澱法製備中孔洞copper-silicate複合材料 19 2.2.3 以迴流法製備Cu3(btc)2-silicate複合材料 19 2.2.4 吸附SF6測試系統 20 2.2.5 以金屬氫氧化物模板法製備中孔洞zinc-silicate複合材料 21 2.2.6 以金屬氫氧化物模板法製備中孔洞Fe-silicate複合材料 21 2.3 儀器鑑定分析 22 2.3.1 穿透式電子顯微鏡(Transmission Electron Microscopy; TEM) 22 2.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy; SEM) 23 2.3.3 熱重分析儀(Thermogravimetry Analysis; TGA) 23 2.3.4 氮氣等溫吸附/脫附測量(N2 adsorption / desorption isotherm) 23 2.3.5 X-射線粉末繞射光譜 (Powder X-Ray Diffraction;PXRD) 28 2.3.6 能量分散光譜儀(Energy Dispersive Spectroscopy;EDS) 29 2.3.7 全反射红外光谱法(Attenuated Total Reflectance;ATR) 30 2.3.8 螢光光譜儀(Fluorescence Spectrophotometer ) 30 第三章 製備中孔洞copper-silicate複合材料 32 3.1 研究動機及目的 32 3.2 以金屬氫氧化物模板法製備copper-silicate複合材料 33 3.2.1 改變pH值對產物的影響 33 3.2.2 水熱時間對產物的影響 35 3.2.3 氫氧化銅模板之熟化時間對產物的影響 38 3.2.4 改變反應時Cu/SiO2比例 40 3.2.5 改變水熱反應溫度 43 3.2.6 改變反應總水量 44 3.2.7 反應機制推導 46 3.2.8 改變鹼源及氧化矽來源對產物的影響 49 3.3 以共沉澱法製備copper-silicate孔洞結構 51 3.3.1 改變pH值對產物的影響 51 3.3.2 水熱時間對產物的影響 53 3.3.3 改變反應中Cu/SiO2比例 55 3.3.4 改變反應總水量對產物的影響 57 3.3.5 利用工業銅離子廢液作為氫氧化銅前驅物 59 3.4 以迴流法製備Cu3(BTC)2- silicate複合材料 60 3.4.1 進行迴流反應後產物之鑑定 60 3.4.2 矽酸鹽在材料中所扮演的角色 62 3.4.3 確認BTC添加量 63 3.4.4 在室溫下反應 64 3.4.5 溶劑中含水量對材料性質的影響 65 3.4.6 溶劑之回收再利用 68 3.5 應用 69 3.5.1 以Cu-silicate作為毒性氣體SiH4的吸附劑 69 3.5.2 以Cu3(BTC)2- silicate作為溫室氣體SF6的吸附劑 69 第四章 製備zinc-silicate和iron-silicate複合材料 72 4.1 以金屬氫氧化物模板法製備中孔洞zinc-silicate複合材料 72 4.1.1 以氫氧化鈉調整水熱反應pH值對產物的影響 73 4.1.2 以碳酸鈉調整水熱反應pH值對產物的影響 75 4.1.3 調控氫氧化鋅模板熟化時間對產物的影響 77 4.1.4 水熱時間對產物的影響 79 4.1.5 調控反應中Zn/SiO2比例 81 4.1.6 改變反應濃度對產物的影響 83 4.1.7 合成Zn(OH)2@SiO2材料 85 4.1.8 推測反應機構 86 4.1.9 應用—以zinc-silicate材料吸附Mn2+做為螢光粉 87 4.2 以金屬氫氧化物模板法製備iron-silicate複合材料 92 4.2.1 實驗流程設計 92 4.2.2 不同pH值對產物的影響 93 4.2.3 改變反應中Fe/SiO2比例 95 4.2.4 調控水熱時間 97 4.2.5 推測反應機構 99 4.2.6 以FeCl2為前驅物探討實驗成果 99 4.2.7 以Fe-silicate材料對水中磷酸鹽吸附之應用 104 第五章 總結 107 參考文獻 109

    1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. Mccullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem.Soc., 1992, 114, 10834-10843.
    3. J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou and D. Y. Zhao, Angew. Chem. Int. Ed. 2003, 42, 3146-3150.
    4. A. Vinu, V. Murugesan and M. Hartmann, Chem Mater, 2003, 15, 1385-1393.
    5. H. P. Lin, C. L. Kuo, B. Z. Wan and C. Y. Mou, J Chin Chem Soc-Taip, 2002, 49, 899-906.
    6. V. Alfredsson and M. W. Anderson, Chem Mater, 1996, 8, 1141-1146.
    7. H. P. Lin and C. Y. Mou, Accounts Chem Res, 2002, 35, 927-935
    8. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. U. Kwon, O. Terasaki, S. E. Park and G. D. Stucky, J Phys Chem B, 2002, 106, 2552-2558.
    9. A. Bhaumik and S. Inagaki, J Am Chem Soc, 2001, 123, 691-696.
    10. Z. T. Zhang, Y. Han, L. Zhu, R. W. Wang, Y. Yu, S. L. Qiu, D. Y. Zhao and F. S. Xiao, Angew Chem Int Edit, 2001, 40, 1258-+.
    11. A. Walcarius, M. Etienne and B. Lebeau, Chem Mater, 2003, 15, 2161-2173.
    12. T. Yokoi, H. Yoshitake and T. Tatsumi, J Mater Chem, 2004, 14, 951-957.
    13. J. N. Cha, T. J. Deming, D. E. Morse and G. D. Stucky, Abstr Pap Am Chem S, 2000, 219, U837-U837.
    14. Z. R. R. Tian, J. Liu, J. A. Voigt, B. McKenzie and H. F. Xu, Angew. Chem. Int. Ed., 2003, 42, 414-+.
    15. F. Noll, M. Sumper and N. Hampp, Nano Lett, 2002, 2, 91-95.
    16. Z. Y. Zhong, Y. D. Yin, B. Gates and Y. N. Xia, Adv Mater, 2000, 12, 206-+.
    17. P. Jiang, J. F. Bertone and V. L. Colvin, Science, 2001, 291, 453-457.
    18. C. E. Fowler, D. Khushalani and S. Mann, Chem Commun, 2001, 2028-2029.
    19. Q. S. Huo, J. L. Feng, F. Schuth and G. D. Stucky, Chem Mater, 1997, 9, 14-&.
    20. Y. F. Lu, H. Y. Fan, A. Stump, T. L. Ward, T. Rieker and C. J. Brinker, Nature, 1999, 398, 223-226.
    21. C. E. Fowler, D. Khushalani, B. Lebeau and S. Mann, Adv Mater, 2001, 13, 649-652.
    22. H. Y. Jin, L. J. Wang and N. C. Bing, Mater Lett, 2011, 65, 233-235.
    23. H. Y. Fan, S. Reed, T. Baer, R. Schunk, G. P. Lopez and C. J. Brinker, Micropor Mesopor Mat, 2001, 44, 625-637.
    24. C. J. Brinker and G. W. Scherer, J Non-Cryst Solids, 1985, 70, 301-322.
    25. G. Férey, Chem. Soc. Rev., 2008, 37, 191.
    26. Stephen S.-Y. Chui, Samuel M.-F. Lo, Jonathan P. H. Charmant, A. Guy Orpen and Ian D. Williams, Science 1999, 283, 1148-1150.
    27. R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt, Accounts Chem Res, 1998, 31, 485-493.
    28. A. Voigt, R. Murugavel, M. L. Montero, H. Wessel, F. Q. Liu, H. W. Roesky, I. Uson, T. Albers and E. Parisini, Angewandte Chemie-International Edition in English, 1997, 36, 1001-1003.
    29. R. Murugavel and H. W. Roesky, Angewandte Chemie-International Edition in English, 1997, 36, 477-479.
    30. M. G. Clerici, G. Bellussi and U. Romano, J Catal, 1991, 129, 159-167.
    31. C. B. Dartt, C. B. Khouw, H. X. Li and M. E. Davis, Abstr Pap Am Chem S, 1993, 206, 57-Petr.
    32. J. C. van der Waal, P. J. Kooyman, J. C. Jansen and H. van Bekkum, Micropor Mesopor Mat, 1998, 25, 43-57.
    33. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    34. A. Corma, V. Fornes, M. T. Navarro and J. Perezpariente, J Catal, 1994, 148, 569-574.
    35. M. D. Alba, Z. H. Luan and J. Klinowski, J Phys Chem-Us, 1996, 100, 2178-2182.
    36. R. Mokaya, W. Jones, Z. H. Luan, M. D. Alba and J. Klinowski, Catal Lett, 1996, 37, 113-120.
    37. B. L. Newalkar, J. Olanrewaju and S. Komarneni, Chem Mater, 2001, 13, 552-557.
    38. D. R. Rolison, Science, 2003, 299, 1698-1701.
    39. F. A. C. Garcia, J. C. M. Silva, J. L. de Macedo, J. A. Dias, S. C. L. Dias and G. N. R. Filho, Micropor Mesopor Mat, 2008, 113, 562-574.
    40. M. Plabst, L. B. McCusker and T. Bein, J Am Chem Soc, 2009, 131, 18112-18118.
    41. M. Haruta, N. Yamada, T. Kobayashi and S. Iijima, J Catal, 1989, 115, 301-309.
    42. R. Nares, J. Ramirez, A. Gutierrez-Alejandre, C. Louis and T. Klimova, J Phys Chem B, 2002, 106, 13287-13293.
    43. Y. Chi, T. Y. Chou, Y. J. Wang, S. F. Huang, A. J. Carty, L. Scoles, K. A. Udachin, S. M. Peng and G. H. Lee, Organometallics, 2004, 23, 95-103.
    44. S. M. Chang, Y. Y. Hsu and T. S. Chan, J Phys Chem C, 2011, 115, 2005-2013.
    45. B.N Figgis(Ed),Introduction to ligand Fields,1975
    46. A.M. Stoneham(Ed),Theory of Defects in Solids,1975
    47. 劉如熹、紀喨勝,“紫外光發光二極體用螢光介紹”2003
    48. P.Atkins and L.Jones, “Chemistry molecules,Matter,and Change”,1997
    49. G. Blasse and B.C.“Grabmaier,Luminescent Materials”,1994
    50. R.C. Popp,“Luminescence and the solid state”,1991
    51. L. Wang, X. Liu, Z. Hou, C. Li, P. Yang, Z. Cheng, H. Lian and J. Lin, J. Phys. Chem. C 2008, 112, 18882-18888
    52. M. H. Nilsen, E. Antonakou, A. Bouzga, A. Lappas, K. Mathisen and M. Stocker, Micropor Mesopor Mat, 2007, 105, 189-203.
    53. E. Moretti, L. Storaro, A. Talon, R. Moreno-Tost, E. Rodriguez-Castellon, A. Jimenez-Lopez and M. Lenarda, Catal Lett, 2009, 129, 323-330.
    54. V. Cauda, A. Schlossbauer, J. Kecht, A. Zurner and T. Bein, J Am Chem Soc, 2009, 131, 11361-11370.
    55. M. J. Fuller and M. E. Warwick, J Catal, 1973, 29, 441-450.
    56. F. Sala and F. Trifiro, J Catal, 1974, 34, 68-78.
    57. S. Takenaka, A. Hirata, E. Tanabe, H. Matsune and M. Kishida, J Catal, 2010, 274, 228-238.
    58. P. W. Schindler, B. Furst, R. Dick and P. U. Wolf, J Colloid Interf Sci, 1976, 55, 469-475.
    59. T. W. Healy, R. O. James and R. Cooper, Advances in Chemistry Series, 1968, 62-&.
    60. R. L. Burwell, R. G. Pearson, G. L. Haller, P. B. Tjok and S. P. Chock, Inorg Chem, 1965, 4, 1123-&.
    61. L. Pauling, Pord. Nat. Acad. Sci. U.S.A, 1930, 16, 578.
    62. A. R. Millward and O. M. Yaghi, Journal of the American Chemical Society, 2005, 127, 17998-17999.
    63. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae and J. R. Long, Chemical reviews, 2011, 112, 724-781.
    64. P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J.-S. Chang, D.-Y. Hong and Y. Kyu Hwang, Langmuir, 2008, 24, 7245-7250.
    65. P. D. Dietzel, V. Besikiotis and R. Blom, Journal of Materials Chemistry, 2009, 19, 7362-7370.
    66. C. Bertail, S. Maron, V. Buissette, T. Le Mercier, T. Gacoin and J.-P. Boilot, Chem. Mater., 2011, 23, 2961-1967.
    67. A. Roy, S. Polarz, S. Rabe, B. Rellinghaus, H. Z€ahres, F. E. Kruis and M. Driess, Chem.–Eur. J., 2004, 10, 1565-1575.
    68. Y. Yang, R. B. Yang, H. J. Fan, R. Scholz, Z. Huang, A. Berger, Y. Qin, M. Knez and U. Gosele, Angew. Chem., Int. Ed., 2010, 49,1442-1446.
    69. J. S. An, J. H. Noh, I. S. Cho, H. S. Roh, J. Y. Kim, H. S. Han and K. S. Hong, J. Phys. Chem. C, 2010, 114, 10330-10335.
    70. L. M. Xiong, J. L. Shi, J. L. Gu, W. H. Shen, X. P. Dong, H. R. Chen, L. X. Zhang, J. H. Gao and M. L. Ruan, Small, 2005, 1, 1044-1047.
    71. T. S. Ahmadi, M. Haase,Weller, H. Mater. Res. Bull. 2000, 35,1869-1879.
    72. S. R. Lukic, D. M. Petrovic, M. D. Dramicanin, M. Mitric, Dacanin, Lj. Scr. Mater. 2008, 58, 655-658.
    73. Bhatkar, V. B.; Omanwar, S. K.; Moharil, S. V. Phys. Status Solidi 2002, 191, 272-276.
    74. J. Qu, C.-Y. Cao, Y.-L. Hong, C.-Q. Chen, P.-P. Zhu, W.-G. Song and Z.-Y. Wu, Journal of Materials Chemistry, 2012, 22, 3562-3567.
    75. J. Wan, X. Chen, Z. Wang, L. Mu and Y. Qian, J. Crystal Growth, 2005, 280, 239-243.
    76. R. Lee, F. Zhang, J. Penczek, B. Wagner, P. Yocom and C. Summers, Journal of Vacuum Science & Technology B, 1998, 16, 855-857.
    77. M. Jang, S.-H. Min, T.-H. Kim and J. K. Park, Environ. Technol., 2006, 40, 1636-1643.
    78. S. Dixit and J. G. Hering, Environmental Science & Technology, 2003, 37, 4182-4189.
    79. W.-Y. Huang, D. Li, J. Yang, Z.-Q. Liu, Y. Zhu, Q. Tao, K. Xu, J.-Q. Li and Y.-M. Zhang, Microporous and Mesoporous Materials, 2013, 170, 200.
    80. M. Edwards, Journal-American Water Works Association, 1994, 86, 64-68.
    81. S.-L. Lo and T.-Y. Chen, Chemosphere, 1997, 35, 919-930.
    82. L. Zeng, Water research, 2003, 37, 4351-4358.
    83. U. Schwertmann and R. M. Cornell, Iron oxides in the laboratory: preparation and characterization, John Wiley & Sons, 2008.
    84. 許建紅,高乃云,唐玉霖,黎雷,水處理技術,2011, 37, 22-34.
    85. K. Fytianos, E. Voudrias and N. Raikos, Environmental Pollution, 1998, 101, 123-130.

    下載圖示 校內:2017-07-08公開
    校外:2017-07-08公開
    QR CODE