| 研究生: |
周瑋倫 Chou, Wei-Lun |
|---|---|
| 論文名稱: |
改良由分子-奈米共振腔所形成的量子強耦合單元 Improvement in quantum strong coupling units consisting of molecules and nanocavities |
| 指導教授: |
陳宣燁
Chen, Shiuan-Yeh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 量子強耦合 、分子 、奈米共振腔 、DNA修飾 |
| 外文關鍵詞: | quantum strong coupling, molecules, nanocavitiesDNA functionalized |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
強耦合是一個通往量子領域的重要工作,也是將來能夠用於量子計算的基石。本研究透過金奈米粒子與金膜,及帶有螢光分子的DNA將其組合以製作分子-奈米共振腔的量子強耦合單元,透過改善金膜平整度以及更改實驗條件,預期目標能成功製作出單分子的強耦合。
由先前本實驗室陳浚弘學長利用DNA製作分子-奈米共振腔結構的架構1雖完整,但金粒子於金膜分布數量僅~6個/(50 µm)2以及散射光譜上有出現強耦合現象(雙峰值)的比例僅佔量測總數的~20%,為了提高在金膜上的強耦合單元數量,首先透過使用原子級起伏的室溫蒸鍍剝離金膜取代原先奈米級起伏的室溫蒸鍍金膜,接著藉由改變置換金粒子離心後的上清液,由鹽類混合溶液取代原先的去離子水,以及改變此鹽類混合溶液的濃度、減少金粒子修飾金膜時間和透過調控DNA濃度以及改變DNA段數來優化此分子-奈米共振腔的製程。
這些優化步驟使得金膜上平均金粒子數量在百倍暗場視野下((50 µm2)),數量由~6顆增加至~436顆,提升了~72倍、強耦合現象的比例提高由~20%提高到~36%,增加幅度為80%,且金粒子修飾上金膜的製程時間也大幅縮短了,由原本的6小時縮短至30秒,修飾速度增加了719倍。
In this study, gold nanoparticles, gold films, and DNA with fluorescent molecules were combined to produce strong coupling units consisting of molecules and nanocavities. Although the structure made by the previous student in this laboratory is completed, the number of gold particles distributed in the gold film is only ~6 particles/(50 μm)2 and the proportion of strong coupling units showing double peaks in the scattering spectrum only accounts for ~20% of the total number.
We increase efficiency of the strong coupling units by replacing the gold film with the stripping gold film with atomic-level flatness, then changing the supernatant after centrifugation of replacement gold particles, reducing incubation time, adjusting DNA concentration, and changing the number of DNA segments.
These optimization steps make the average number of gold particles on the gold film under a 100x dark field view (~50 µm2), the number increased from ~6 to ~436, which is ~72 times higher, and the proportion of strong coupling phenomenon has increased from ~20% to ~36%, and the increase rate is 80%.
The process time for gold particles to modify the gold film has also been greatly shortened from the original 6 hours to 30 seconds, the modification speed increased by 719 times.
1. 陳浚弘(2019)。螢光分子與單一奈米共振腔的量子強耦合逼近(未出版博碩士論文)。國立成功大學,台南市。.
2. Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).
3. Chikkaraddy, R. et al. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami. Nano Lett. 18, 405–411 (2018).
4. Hegner, M., Wagner, P. &Semenza, G. Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy. Surf. Sci. 291, 39–46 (1993).
5. McPeak, K. M. et al. Plasmonic films can easily be better: Rules and recipes. ACS Photonics 2, 326–333 (2015).
6. Lukas Novotny, B. H. Principles of Nano-Optics - Lukas Novotny, Bert Hecht - Google Books. (2006).
7. Tischler, J. R. et al. Solid state cavity QED: Strong coupling in organic thin films. Org. Electron. 8, 94–113 (2007).
8. Erdmann, V. A. &Barciszewski, J. DNA and RNA nanobiotechnologies in medicine: Diagnosis and treatment of diseases. DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-36853-0.
9. Bhushan, B. Springer Handbook of Nanotechnology, 3rd ed. Springer-Verlag (2010). doi:10.1007/978-3-642-02525-9.
10. Koo, K. M., Sina, A. A. I., Carrascosa, L. G., Shiddiky, M. J. A. &Trau, M. DNA-bare gold affinity interactions: Mechanism and applications in biosensing. Analytical Methods (2015) doi:10.1039/c5ay01479d.
11. Kimura-Suda, H., Petrovykh, D. Y., Tarlov, M. J. &Whitman, L. J. Base-dependent competitive adsorption of single-stranded DNA on gold. J. Am. Chem. Soc. 125, 9014–9015 (2003).
12. Reimer, L. Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, Second Edition. Measurement Science and Technology vol. 11 (2000).
13. Atomic Force Microscopy/Scanning Tunneling Microscopy 2. Atomic Force Microscopy/Scanning Tunneling Microscopy 2 (Springer US, 1997). doi:10.1007/978-1-4757-9325-3.
14. Taton, T. A. Preparation of Gold Nanoparticle-DNA Conjugates. Curr. Protoc. Nucleic Acid Chem. 9, 12.2.1-12.2.12 (2002).
15. Huang, E., Satjapipat, M., Han, S. &Zhou, F. Surface structure and coverage of an oligonucleotide probe tethered onto a gold substrate and its hybridization efficiency for a polynucleotide target. Langmuir 17, 1215–1224 (2001).
16. Levine, L. A., Junker, M., Stark, M. &Greenleaf, D. A DNA Melting Exercise for a Large Laboratory Class. J. Chem. Educ. 92, 1928–1931 (2015).
17. Tips, P. Annealing Oligonucleotides. Quality 2009–2009 (2009).
18. Protocol for Annealing Oligonucleotides — DNA or RNA Annealing(https://www.sigmaaldrich.com/technical-documents/protocols/biology/annealing-oligos.html).
19. Demers, L. M. et al. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 72, 5535–5541 (2000).
20. Hill, H. D., Millstone, J. E., Banholzer, M. J. &Mirkin, C. A. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3, 418–424 (2009).
21. Mourougou-Candoni, N., Naud, C. &Thibaudau, F. Adsorption of thiolated oligonucleotides on gold surfaces: An atomic force microscopy study. Langmuir 19, 682–686 (2003).
22. Zhou, W., Lin, Q. Y., Mason, J. A., Dravid, V. P. &Mirkin, C. A. Design Rules for Template-Confined DNA-Mediated Nanoparticle Assembly. Small 14, 1–7 (2018).
23. IDT(https://sg.idtdna.com/calc/analyzer).