| 研究生: |
尹菀珊 Yin, Wan-Shan |
|---|---|
| 論文名稱: |
運用螺旋理論於人體足部力量分析 Foot Reaction Analysis of Whole Body Dynamic via Screw Theory |
| 指導教授: |
蔡明俊
Tsai, Ming-June |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 全身動力學 、螺旋理論 、ZMP 、足部力量 |
| 外文關鍵詞: | Whole body dynamic analysis, Screw theory, Zero moment point, Foot reaction |
| 相關次數: | 點閱:126 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出使用三維人體模型來計算全身運動參數,且運用螺旋理論提出一新方法求取人體的零力矩點(ZMP)。根據專業武術家表演連續25秒的武術動作執行本研究所提出的方法,然後比較以螺旋理論求得的ZMP與使用常規的Vukobratovic法所求得的ZMP的差異。最後,運用螺旋理論中的二系統幾何特性來推導雙腳觸地時的數學模型,該系統可用12條限制式及2個自由參數描述,然後以最小內力矩為目標函數求最佳解。結果顯示,自由參數越多所求得的內力矩越小,且人體所受的內力與內力矩可由作用於雙腳的螺旋求得。
This study proposes a method for determining the dynamic parameters of human motion using a three-dimensional (3D) whole human body model. Accordingly, the wrench screw exerts on the body ($0) is found via Newton/Euler equations. Furthermore, the zero moment point (ZMP) of the $0 is found from the definition of the screw. The comparison of the proposed method and the conventional Vukobratovic method is demonstrated by evaluating the whole body dynamics over the course of a 25-second sequence of continuous moves performed by a professional martial arts practitioner. Using linear dependency of the reaction screws of both feet and $0, there are 12 equations to solve 14 unknowns. Two parameters are characterized by the geometry of the two-system, namely a cylindroid. Therefore, optimal foot reactions can be computed by the assumption of minimum internal moment generated by the foot contact points. It is shown that the two-system is given more degrees of freedom, the internal moment can reach a smaller value. Moreover, the internal forces and internal moments acting on the body are determined by the reaction screws of both feet.
[1] Yeadon, M. R., & Morlock, M. (1989). The appropriate use of regression equations for the estimation of segmental inertia parameters. J. of biomechanics, 22(6), 683-689.
[2] De Leva, P. (1996). Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. J. of biomechanics, 29(9), 1223-1230.
[3] Pearsall, D. J., Reid, J. G., & Ross, R. (1994). Inertial properties of the human trunk of males determined from magnetic resonance imaging. Annals of biomedical engineering, 22(6), 692-706.
[4] Pearsall, D. J., Reid, J. G., & Livingston, L. A. (1996). Segmental inertial parameters of the human trunk as determined from computed tomography. Annals of biomedical engineering, 24(2), 198-210.
[5] Lee, M. K., Koh, M., Fang, A. C., Le, S. N., & Balasekaran, G. (2009, January). Estimation of Body Segment Parameters Using Dual Energy Absorptiometry and 3-D Exterior Geometry. 13th Int.Conference on Biomedical Engineering (pp. 1777-1780). Springer Berlin Heidelberg.
[6] Zhao, J., Wei, Y., Xia, S., & Wang, Z. (2010, October). Estimating human body segment parameters using motion capture data. Universal Communication Symposium (IUCS), 2010 4th Int. (pp. 243-249). IEEE.
[7] Norton, J., Donaldson, N., & Dekker, L. (2002). 3D whole body scanning to determine mass properties of legs. J. of biomechanics, 35(1), 81-86.
[8] Ensminger, G. J., Robertson, R. N., & Cooper, R. A. (1995, September). A model for determining 3-D upper extremity net joint forces and moments during wheelchair propulsion. In Engineering in Medicine and Biology Society, 1995., IEEE 17th Annual Conference (V. 2, pp. 1179-1180).
[9] Liu, T., Inoue, Y., Shibata, K., & Shiojima, K. (2011, May). Three-dimensional lower limb kinematic and kinetic analysis based on a wireless sensor system. Robotics and Automation (ICRA), 2011 IEEE International Conference on (pp. 842-847).
[10] Nakamura, Y., Yamane, K., Fujita, Y., & Suzuki, I. (2005). Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model. Robotics, IEEE Trans. on, 21(1), 58-66.
[11] Tsai, M. J., & Fang, J. J. (2007). U.S. Patent No. 7,218,752. Washington, DC: U.S. Patent and Trademark Office.
[12] Tsai, M. J., & Lung, H. Y. (2014). Two-phase optimized inverse kinematics for motion replication of real human models. J. of the Chinese Institute of Engineers, 37(7), 899-914.
[13] Tsai, M. J., Lee, A., & Lee, H. W. (2013). Automatic Full Body Inverse Dynamic Analysis Based on Personalized Body Model and MoCap Data. Advances in Mechanisms, Robotics and Design Education and Research (pp. 305-322). Springer International Publishing.
[14] Vukobratovic, M., & Juricic, D. (1969). Contribution to the synthesis of biped gait. Biomedical Engineering, IEEE Transactions on, (1), 1-6.
[15] Burnfield, M. (2010). Gait Analysis: Normal and Pathological Function. J. of Sports Science and Medicine, 9, 353.
[16] Popovic, M. B., Goswami, A., & Herr, H. (2005). Ground reference points in legged locomotion: Definitions, biological trajectories and control implications. The Int. J. of Robotics Research, 24(12), 1013-1032.
[17] Firmani, F., & Park, E. J. (2013). Theoretical analysis of the state of balance in bipedal walking. J. of biomechanical engineering, 135(4), 041003.
[18] Ren, L., Jones, R. K., & Howard, D. (2007). Predictive modelling of human walking over a complete gait cycle. J. of biomechanics, 40(7), 1567-1574.
[19] Ren, L., Jones, R. K., & Howard, D. (2008). Whole body inverse dynamics over a complete gait cycle based only on measured kinematics. J. of Biomechanics, 41(12), 2750-2759.
[20] 黃靖元, "使用三維掃描點資料建立人體結構化模型," 國立成功大學機械工程學系碩士論文, 2013.
[21] 梁嘉哲, "運動追蹤系統中建立自動化註冊程序於編碼標誌框及人體模型之間," 國立成功大學機械工程學系碩士論文, 2010.
[22] 龍學勇, "人體運動處理系統之研究," 國立成功大學機械工程學系博士論文, 2013.
[23] Zatsiorsky, V. M. (1998). Kinematics of human motion. Human Kinetics.
[24] 陳冠宏, "3D人體點資料的特徵萃取與電腦人模建立," 國立成功大學機械工程學系碩士論文, 2001.
[25] 李洋龍, "基於運動追蹤資料之全身逆向動力學," 國立成功大學機械工程學系碩士論文, 2011.
[26] Denavit, J. (1955). A kinematic notation for lower-pair mechanisms based on matrices. Trans. of the ASME. Journal of Applied Mechanics, 22, 215-221.
[27] Waldron, K., & Schmiedeler, J. (2008). Kinematics. Springer Handbook of Robotics, 9-33.
[28] Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. The computer J., 7(2), 149-154.
[29] Jia, Y. B. (2013). Quaternions and Rotations.
[30] Wang, L. C., & Chen, C. C. (1991). A combined optimization method for solving the inverse kinematics problems of mechanical manipulators. Robotics and Automation, IEEE Transactions on, 7(4), 489-499.
[31] Kane, T. R., & Levinson, D. A. (1985). Dynamics, theory and applications. McGraw Hill.
[32] Carretero, J. A., Podhorodeski, R. P., Nahon, M. A., & Gosselin, C. M. (2000). Kinematic analysis and optimization of a new three degree-of-freedom spatial parallel manipulator. J. of Mechanical Design, 122(1), 17-24.
[33] Fu, K. S., Gonzalez, R. C., & Lee, C. G. (1987). Robotics (pp. 163-189). McGraw-Hill, New York.
[34] Whitney, D. E. (1972). The mathematics of coordinated control of prosthetic arms and manipulators. J. of Dynamic Systems, Measurement, and Control, 94(4), 303-309.
[35] Burden, R., Faires, J., & Burden, A. (2015). Numerical analysis. Cengage Learning.
[36] Vukobratović, M., & Borovac, B. (2004). Zero-moment point—thirty five years of its life. Int. J. of Humanoid Robotics, 1(01), 157-173
[37] Hunt, K. (1978). Kinematic Geometry of Mechanisms. Clarendon Press, Oxford.
[38] Phillips, J. (1990). Freedom in Machinery: Screw theory exemplified (Vol. 2). Cambridge University Press.
[39] http://reference.wolfram.com/language/ref/NMinimize.html
校內:2020-02-13公開