| 研究生: |
倪瑋豪 Ni, Wei-Hao |
|---|---|
| 論文名稱: |
高溫下鋼結構潛變行為之研究 The Creep Behaviors of Steel Structures at High Temperatures |
| 指導教授: |
鍾興陽
Chung, Hsin-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 向量式有限元素法 、潛變 、潛變挫屈 、鋼結構 、高溫 |
| 外文關鍵詞: | Vector Form Intrinsic Finite Element, Creep, Creep Buckling, Steel Structure, High Temperature |
| 相關次數: | 點閱:116 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋼材在高溫中受潛變的影響會造成變形明顯增加,故潛變對鋼結構在高溫下結構行為之影響是相當重要,本文以加入溫度效應和潛變效應的向量式有限元素法來研究平面鋼結構在高溫環境中受潛變效應的結構行為,並透過相關文獻的試驗與數值分析結果與本文所建立之分析模式進行驗證,以確保所建立之分析模式的正確性;接著再利用本文所建立之數值分析模式,分別探討高溫環境下梁桿件與柱桿件在不同載重比與邊界條件下,桿件因潛變而造成破壞的過程,桿件破壞將以桿件挫屈或潛變變形達到規範規定之潛變破壞準則為判定依據,最後再探討平面鋼構架在高溫中因潛變所造成的影響。
In high temperatures, the deformation of steel increases noticeably due to creep effect, so creep effect is very important for the structural behaviors of steel structures in high temperatures. In this study, the Vector Form Intrinsic Finite Element (VFIFE) method with thermal effect and creep effect was employed to investigate the structural behaviors of plane steel structures in high temperatures. The correctness of the numerical analysis model developed using the VFIFE method was verified by comparing the results with the test and numerical results of the related references. Using the developed numerical analysis model, the failure processes of steel beams and steel columns due to high temperature creep effect under various load ratios and boundary conditions were investigated. The failures of structural members were determined by member buckling or by the creep deformation reaching the failure limit of the code. The structural behaviors of plane steel frames due to the influences of high temperature creep effect were also investigated in this study.
AISC. Specification for Structural Steel Buildings. American Institute of Steel Construction, 2005.
Bennetts, I.D., Proe, D.J. and Thomas, I.R., “Guidelines for Assessment of Fire Resistance of Structure Steel Members.” AISC (Australian Institute of Steel Construction), p3, 1990.
BSI, “Fire Tests on Building Materials and Structure.” Part20, Method for Determination of The Fire Resistance of Elements of Construction (General Principles), 1987.
BSI, “Structural Use of Steelwork in Building.” Part8, Code of Practice for Fire Resistance Design, 2003.
Correia Rodrigues, J.P.C., Cabrita Neves, I.C. and Valente, J.C., “Experimental Research on the Critical Temperature of Compressed Steel Elements with Restrained Thermal Elongation,” Fire Safety Journal, Vol. 35, Issue. 2 pp 77-98, 2000.
Chen, C., Yao, B., Yang, Y., Cai, X., Zhang, H. and Wan, Y., “Experimental Study on Temperature Distribution and Response Behaviors of Steel Element under Corner Fire Conditions.” Engineering Science, Vol. 7, No. 9, pp. 70-75, 2005.
Chiou, Y.J. and Hsiao, P.A. “Large Displacement Analysis of Cyclically Loaded Inelastic Structures.” Journal of Engineering Mechanics-ASCE, Vol. 131, No. 12, pp. 1803-1810, 2005.
Cong, S.P., Liang, S.P., and Dong, Y.L., “Experimental Investigation of Behavior of Simple Supported Steel Beams under Fire.” Journal of Southeast University, Vol. 35, Sup. 1, pp. 66-68, 2005.
Dorn, J.E. “Some fundamental experiments on high temperature creep.” Journal of the Mechanical and Physics of Solids, Vol. 3, Issue. 2, pp89-104 Pergamon, London, 1954.
ECCS-Technical Committee 3, “European Recommendations for the Fire Safety of Steel Structures.” Elsevier Scientific, New York, 1983.
EUROCODE3, “Design of Steel Structures-Prat1.2 : General Rules-Structural Fire Design.” British Standard Institution, 2001.
Fessler, H. and Hyde, T.H., “Creep Deformation of Metals, Creep of Engineering Materials.” In : Pomeroy CD, editor. A journal of strain analysis monograph. Mechanical Engineering Publication Limited, pp.85-100, 1978.
Fields, B.A. and Fields, R.J., “Elevated Temperature Deformation of Structural Steel.” National Institute of Standards and Technology, NISTIR 88-3899, 1989.
Fields, B.A. and Fields, R.J., “The Prediction of Elevated Temperature Deformation of Structural Steel under Anisothermal Conditions.” National Institute of Standards and Technology, NISTIR 4497, 1991.
Williams-Leir, G. “Creep of Structural Steel in Fire: Analytical Expressions” Fire and Materials, Vol. 7, No. 2, pp. 73-78, 1983.
Harmathy, T.Z., “A Comprehensive Creep Model.” Journal Basic Engineering Trans - ASME, Vol.89, No. 3, pp.469-502, 1967.
Harmathy, T.Z., “Creep Deflection of Metal Beams in Transient Heating Processes with Particular Reference to Fire.” Canadian Journal of Civil Engineering, Vol. 3, No. 2, pp. 219-228, 1976.
Huang, Z.F. and Tan, K.H. “Analytical Fire Resistance of Axially Restrained Stell Columns.” Journal of Structural Engineering, ASCE, Vol. 129, No. 11, pp. 1531-1537, 2003.
ISO834-1, “Fire-Resistance Tests-Elements of Building Construction,” 1999.
Norton, F.H., “The Creep of Steel at High Temperature.” McGraw Hill, New York, 1929.
Plem, E., “Theoretical and Experimental Investigations of Point Set Structures.” Swedish Council for Building Research, Document, D9, 1975.
Stanzak, W.W., “Fire tests on Wide-Flange Steel Beams Protected with Gypsum-sanded plaster.” Fire study No. 16 of the Division of Building Research, National Research Council of Canada, 1967.
Skowronski, W., “A Study of the Steel Beam, Deformation During Fire.” Building and environment, Pergamon, Vol. 23, No. 2, pp. 159-167, 1988.
Sakumoto, Y., Nakazato, T. and Matsuzaki, A., “High-Temperature Properties of Stainless Steel for Building Structures.” Journal of Structural Engineering, Vol. 122, No. 4, pp. 399-406, 1996.
Shih, C., Wang, Y.K. and Ting, E.C. “Fundamentals of a Vector form Intrinsic Finite Element : Part III. Convected material frame and examples.” Journal of Mechanics, Vol. 20, No. 2, pp. 133-143, 2004.
Tan, K.H., Ting, S.K. and Huang, Z.F. “Visco-Elasto-Plastic Analysis of Steel Frames in Fire.” Journal of Structural Engineering ASCE, Vol. 128, No. 1, pp. 105-114, 2002.
Ting, E.C., Shih, C. and Wang, Y.K., “Fundamentals of a Vector form Intrinsic Finite Element : Part I. Basic Procedure and a Plane Frame Element.” Journal of Mechanices, Vol. 20, No. 2, pp. 113-122, 2004a.
Ting, E.C., Shih,C. and Wang,Y.K., “Fundamentals of a Vector form Intrinsic Finite Element : Part II. Plane Solid Element.” Journal of Mechanics, Vol. 20, No. 2, pp. 123-132, 2004b.
Zhang,H., “Studies of Steel Structure Material Mechanical Performance under the Fire Condition.” Journal of the Chinese People’s Armed Police Force Academy, Vol. 20, Issue. 3, pp. 33-35, 2004.
于宗漢,「耐火鋼H型柱之火害行為」,碩士論文,國立高雄第一科技大學,高雄,2006。
中國國家標準CNS,總號12514,建築物構造部份的耐火試驗法,台灣,2000。
王仁佐,「向量式結構運動分析」,博士論文,國立中央大學土木工程研究所,中壢,2005。
內政部營建署「鋼結構極限設計法規及解說」,行政院,2007。
孫金香、高偉 譯,建築物綜合防火設計,天津科技翻譯出版公司,天津,1994。
莊有清,「鋼材在高溫環境下之行為探討」,碩士論文,國立成功大學土木工程研究所,台南 ,2003。
連寬宏,「高溫環境下鋼結構之向量式有限元素法」,博士論文,國立成功大學土木工程研究所,台南,2009。
陳韋夷,「鋼柱在高溫環境下肢潛變挫屈研究」,碩士論文,國立成功大學土木研究所,台南,2010。
涂子凡,「鋼結構承受爆炸之高溫行為研究」,碩士論文,國立成功大學土木研究所,台南,2010。
張燕如,「鋼結構火害反應之向量式有限元素法分析」,碩士論文,國立成功大學土木工程研究所,台南,2007。
曾冠華,「耐火鋼箱型鋼柱受火害之行為」,碩士論文,國立台灣科技大學營建工程系,台北,2005。
內政部消防署網站,「各縣市歷年火災統計表」,2011
http://www.nfa.gov.tw/Show.aspx?MID=1028&UID=1032&PID=1024。