| 研究生: |
蔡宜芬 Tsai, I-Fen |
|---|---|
| 論文名稱: |
泡沫無機聚合物材質與微結構對其隔音性能之數值分析 Numerical Analysis for Effect of Material Properties and microstructure on the Sound Insulation of Foamed Inorganic Polymers |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 泡沫無機聚合物 、穿透損失 、數值分析 |
| 外文關鍵詞: | Foamed Inorganic Polymer, Sound Transmission Loss, Numerical Analysis |
| 相關次數: | 點閱:120 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用有限元素套裝軟體ABAQUS,建立一泡沫無機聚合物之數值分析模型,利用不同元素分析材質對其隔音性能之影響,其中固體元素可有效模擬板結構之穿透損失行為,聲學元素於加入體積阻力後,可有效模擬泡沫無機聚合物於低頻之聲學行為。另外,探討不同微結構對泡沫無機聚合物隔音性能之影響,主要分析模型包括:(一)封閉型泡沫材料之微結構模型;(二)改變泡沫不同孔徑尺寸;(三)於封閉型泡沫之微結構中加入連通道,使氣體間彼此相通。此外,亦製作三種不同泡沫孔徑分布之泡沫無機聚合物試體,進行隔音穿透損失試驗,使之與數值分析結果相互比較。試驗結果發現,於泡沫孔隙率及面密度相同條件下,具不同微結構之泡沫無機聚合物試體,其穿透損失值變化不大。再藉由數值分析,驗證材質與微結構對泡沫無機聚合物穿透損失之影響,數值分析結果亦與試驗結果相同。所以,本研究所建立之2D數值分析模型,已能模擬真實試驗結果之變化趨勢,可部分取代高耗費耗時之隔音穿透試驗。
Here, a commercial finite element package ABAQUS with different types of elements was used to numerically analyze the sound transmission losses of foamed inorganic polymers. It is found that solid element can effectively simulate the transmission loss of a solid plate while acoustic medium with a volumetric drag can effectively simulate the low-frequency acoustic response of a foamed inorganic polymer. In addition, three types of models were employed to investigate the sound insulation of foamed inorganic polymers with different microstructures: (a) a closed-cell microstructure with a single cell size; (b) a closed-cell microstructure with different cell sizes; (c) a closed-cell microstructure with tunnels. Furthermore, foamed inorganic polymer specimens with three different pore-size distributions were produced and tested to measure their sound transmission losses. Experimental results indicate that the variation of sound transmission losses is insignificant if the porosity and surface density of foamed inorganic polymers are the same. Also, numerical results suggest that the effect of microstructural geometry on the sound transmission losses of foamed inorganic polymers with the same surface density is negligible, consistent with the experimental results. Therefore, the proposed 2D numerical model can be utilized to partially replace tedious experimental works when experimental cost and consuming-time are concerned.
[1]王怡雯, "泡沫無機聚合物之物理性質," 成功大學土木工程研究所碩士論文, 2009.
[2]范雅茱, "微結構及厚度對發泡無機聚合物工程性質之影響," 成功大學土木工程研究所碩士論文, 2010.
[3]J. Davidovits, "Geopolymers : inorganic polymeric new materials," Journal of Thermal Analysis, vol. 37, pp. 1633-1656, 1991.
[4]張瑜文, "水庫淤泥應用於無機聚合物膠結材," 成功大學土木工程研究所碩士論文, 2008.
[5]H. Xu and J. S. J. V. Devente, "The geopolymerisation of alumino-silicate minerals," Int. J. Miner. Process, vol. 59, pp. 247-266, 2000.
[6]蘇德勝, 噪音原理及控制. 臺隆書局, 1991.
[7]F. Fahy, Sound and Structural Vibration: Radiation,Transmission and Response. Academic Press, 1985.
[8]M. J. Crocker and A. J. Price, "Sound transmission using statistical energy analysis," Journal of Sound and Vibration, vol. 9, pp. 469-486, 1969.
[9]C. S. Pates III, U. S. Shirahatti, and C. Mei, "Sound–structure interaction analysis of composite panels using coupled boundary and finite element methods," J. Acoust. Soc. Am., vol. 98, pp. 1216-1221, 1995.
[10]A. Craggs, "A finite element model for rigid porous absorbing materials," Journal of Sound and Vibration, vol. 61, pp. 101-111, 1978.
[11]K. Attenborough, "Acoustical characteristics of rigid fibrous absorbents and granular materials," J. Acoust. Soc. Am., vol. 73, p. 785, 1982.
[12]D. L. Johnson, J. Koplik, and R. Dashen, "Theory of dynamic permeability and tortuosity in fluid-saturated porous media," J. Fluid Mechanics, vol. 176, pp. 379-402, 1987.
[13]M. R. Stinson, "The propagation of plane sound wave in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape," J. Acoust. Soc. Amer., vol. 89, pp. 550-558, 1991.
[14]M. A. Biot, "The theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range.," J. Acoust. Soc. Am., vol. 28, pp. 168-178, 1956.
[15]M. A. Biot, "The theory of propagation of elastic waves in a fluid-saturated porous solid. II. High frequency range.," J. Acoust. Soc. Am., vol. 28, pp. 179-191, 1956.
[16]M. A. Biot, "Generalized Theory of Acoustic Propagation in Porous Dissipative Media," J. Acoust. Soc. Am., vol. 34, pp. 1254-1264, 1962.
[17]P. Goransson, "Acoustic and vibrational damping in porous solids," Philos Transact A Math Phys Eng Sci, vol. 364, pp. 89-108, Jan 15 2006.
[18]G. Gautier, L. Kelders, J. P. Groby, O. Dazel, L. De Ryck, and P. Leclaire, "Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material," J Acoust Soc Am, vol. 130, pp. 1390-8, Sep 2011.
[19]J.S. Bolton, N.-M. Shiauf, and Y. J. Kang, "Sound transmission through multi-panel structure lined with elastic porous materials," J.Sound Vib., vol. 191, pp. 317-347, 1996.
[20]A. A. Gubaidullin, O. Y. Kuchugurina, D. M. J. Smeulders, and C. J. Wisse, "Frequency-dependent acoustic properties of a fluid/porous solid interface," J Acoust Soc Am, vol. 116, pp. 1474-1480, 2004.
[21]J.F. Allard, Y. Champoux, and C. Depollier, "Modelization of layered sound absorbing materials with transfer matrices," J. Acoust. Soc. Am., vol. 82, pp. 1792-1796, 1987.
[22]M.E. Delany and E. N. Bazley, "Acoustic properties of fibrous absorbent materials," Applied Acoustics, vol. 3, pp. 105-116, 1970.
[23]盧士一, "防音材料性能研究-材料穿透損失測定系統之建立," 行政院勞工安全衛生研究所研究報告2003.
[24]中野有朋, 噪音工學的基礎. 復漢出版社印行, 1985.
[25]Abaqus, Abaqus Standard Theory Manual. MSC/ABAQUS Corp, 1997.
[26]黃晴文, "發泡無機聚合物隔音性能之數值分析," 成功大學土木工程研究所碩士論文, 2011.
[27]D. Takahashi, "Effects of panel boundedness on sound transmission problems," J. Acoust. Soc. Amer., vol. 98, pp. 2598-2606, 1995.