| 研究生: |
蔡軒昂 Tsai, Hsuan-Ang |
|---|---|
| 論文名稱: |
分子模版材料之製備與對肌酸酐之特異性吸附 Synthesis of Molecularly Imprinted Materials for the Specific Binding of Creatinine |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 4-乙烯吡啶 、溶膠-凝膠法.肌酸酐 、肌酸 、模印因子 、分子辨識系統 、分子模版高分子 、β-環糊精 |
| 外文關鍵詞: | creatine, creatinine, 4-vinylpyridine, β-cyclodextrin, molecularly imprinted polymer, molecular recognition, imprinting factor |
| 相關次數: | 點閱:85 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分子辨識系統在生化界上的應用相當廣泛,但由於天然的分子辨識系統常因為外在因素的影響,如:pH 值、有機溶劑和溫度的影響下而造成分子辨識系統無法達到預期的效果。近十幾年來分子模版高分子(molecularly imprinted polymer) 的理論已被廣泛的應用在分子辨識系統上。所謂的分子模版高分子主要是利用官能基單體與目標物或目標物之相似物即分子模版進行共價或非共價鍵鍵結,之後再利用交聯劑來進行交聯聚合。當聚合完成後以適當溶劑將高分子中的分子模版洗出。洗出模版後的高分子本身則具有與分子模版形狀相近或具互補作用力的孔洞。具這樣特性的孔洞即可作為分子辨識系統的最主要依據。
在本論文中,嘗試利用各種不同的分子模版高分子製備方法,包括:(1) 以β-環糊精(β−cyclodedxtrin, β−CD) 作為官能基單體,環氧氯丙烷(Epichlorohydrin, EPI) 為交聯劑所製備之分子模版高分子、(2) 以4-乙烯吡啶(4-vinylpyridine, 4-Vpy) 為官能基單體, 二乙烯基苯(divinylbenzene, DVB) 為交聯劑所製備之分子模版高分子、(3) 利用溶膠-凝膠法(sol-gel) 所製備之分子模版高分子對於肌酸酐進行作辨識能力測試。
製備之分子模版高分子利用掃描式電子顯微鏡(SEM)、FT-IR 以及Solid state NMR 鑑定其化學結構,並且判定肌酸酐是否包埋於高分子中。同時利用N-羥基丁二硫亞氨(N-hydroxysuccinimide) (相似物)、咯烷酮(2-pyrrolidinone) (相似物)、肌酸(creatine) (共存物)和肌酸酐(creatinine)以雙成份或三成份共存混合後,測試上述之模版高分子在不同成份之混合液中對肌酸酐之辨識能力。而在此外,希望製備的分子模版吸附材料能進一步應用在臨床上,本論文中也將分子模版高分子應用在人血清中,以測試其在血清中辨識肌酸酐的能力。
由結果中可以觀察並得到在以β-環糊精為官能基單體所製備的高分子中,當製備條件β-環糊精/環氧氯丙烷=1/10 (molar ratio) 和β-環糊精/肌酸酐=3/2 (molar ratio) 時可得到最佳的模印因子(imprinting factor) 為4.06 ± 0.98。而在雙成份與三成份的混合液分析中對於肌酸酐的最佳選擇性則分別為2.43 ± 0.20 與2.87 ± 0.39。在鹽類影響以及遮蓋(capping) 修飾實驗中得到此分子模版高分子之氫鍵作用力會影響對於肌酸酐的專一辨識能力。在以4-乙烯吡啶為官能基單體所製備的高分子中,利用其較微弱的氫鍵作用力用以突顯其分子模版孔洞效應,最後得到最佳的模印因子為3.25。為探求其此分子模版高分子在混合液中對於肌酸酐的辨識能力,分別選用了與肌酸酐在結構上相似物質以及其在血清中的共存物當作競爭吸附的一個模式,其結果可得到對於肌酸酐最佳的選擇性為3.90± 0.01。再進一步的測試中了解此分子模版高分子在人血清之複雜成份環境下亦具有辨識肌酸酐的能力。最後經由上述實驗的結果分析後,採用無機溶膠-凝膠法(sol-gel) 所製備之分子模版高分子希望能藉此提高其專一辨識肌酸酐的能力。經實驗結果顯示在以水為溶劑下吸附肌酸酐的效果為最好,其模印因子可高達7.18 ± 0.05。在定濃度混合液的分析結果中,分子模版高分子對於肌酸酐最佳的選擇性則分別為8.75 ± 0.38 (雙成份混合液) 和5.19 ± 0.54 (三成份混合液)。
由以上所有的製備與測試結果中可以結論出對於分子量較小且為極性之肌酸酐分子模版,於分子模版高分子的製備方法上,顯示是以無機方法製備出的材料較有機製備法,與模版性質與分子專一辨識能力兩方面有較佳的表現,但因模版材料之製備條件中變數相當多,因此僅就本系統之結果做此結論,至於模版無機材料是否優於模版有機材料則尚待進一步確認。
The approach of molecular recognition based on synthetic materials has beenwidely applied in the biological research. To utilize nature molecular ecognitionbiological system exists many problems, such as variation of pH environment,organic solvents and high temperature effects, which will then result in anunstable system. One approach known as molecular imprinting was developed to overcome the above-mentioned disadvantages occurred in nature molecularrecognition systems. Molecularly imprinted polymer (MIP), a kind of molecular recognition materials, is generally synthesized from using certain functional monomer to copolymerize with a cross-linking agent in the presence of a targetmolecule (template). The functional monomer forms a complex with the template molecule first and then the polymerization is propagated under proper condition. After the polymerization, a proper solvent is applied to wash out the imprinted templates so that specific cavity is formed. The polymer is then expected to be able to provide the specific recognition sites for the template molecule.
In this study, by using creatinine as the template molecule, three different molecularly imprinted materials were prepared including the imprinted poly(β-cyclodextrin-co-epichlorohydrin), the imprinted poly(4-vinylpyridine-co-divinylbenzene) and the imprinted sol-gel. Using these molecularly imprinted materials respectively, we expected that the specific recognition of creatinine in different mixture solutions under the interference of the other compounds could be accomplished.FT-IR, SEM, and Solid state NMR were applied to identify the chemical structures and imprinting effect of the synthetic polymers.Creatinine and other three compounds, N-hydorxysuccinimide, 2-pyrrolidinone and creatine, were used to comprise the mixture solutions for the investigation of the selectivity factors of the molecularly imprinted polymers thus repared. For the further evaluation of medical application, serum samples of different creatinine concentrations were employed in the adsorption experiments with molecularly imprinted polymers as the adsorbents to test the feasibility of MIP for clinical use.
From the experimental results of imprinted poly(β-cyclodextrin-co-epichlorohydrin), it indicated that with a molar ratio of monomer to template, 3:2, and monomer to cross-linking agent, 1:10, the imprinted polymer was successfully prepared. The imprinting factor was 4.06 ± 0.98. In the adsorption results from mixtures, the best selectivity for creatinine by MIP in binary and ternary solutions were 2.43±0.20 and 2.87±0.39,respectively.According to the results of salt effect and capping effect, it was pointed out that hydrogen binding played an important factor for specific recognition of creatinine.
From the experimental results of imprinted poly(4-vinylpyridine-co-divinylbenzene), best imprinting factor of 3.25 was achieved. In the multi-component adsorption results, the best selectivity for creatinine by MIP were 3.90 ± 0.01. Furthermore, this MIP was also applied to human seum for the recognition of creatinine.
From the results of sol-gel MIP, it could be seen that water was the better solvent compared to methanol. The imprinting factor was 7.18±0.05. In the multi-component adsorption results, the best selectivity for creatinine by MIP in binary and ternary mixture solutions were 8.75±0.38 and 5.19±0.54, respectively. Comparing the results between inorganic sol-gel MIP and synthesized organic MIP, it could be seen that inorganic sol-gel MIP may have better recognition ability for small size template, such as creatinine.
參考文獻
1. E. T. Maggio “Enzyme-Immunoassay” CRC Press, Inc., Corporate Blad., N. W., Boca. Raton, Florida, 2000
2. J. P. Gosling and L. V. Basso “Immunoassay” Butterworth-Heineann, 1994
3. P. A. G. Cormack and A. Z. Elorza “Molecularly imprinted polymers: synthesis and characterization” Journal of Chromatography B, 804, pp. 173-182, 2004
4. W. Dong, M. Yan, M. Zhang, Z. Liu and Y. Li “A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer” Analytica Chimica Acta, 542, pp .186-192, 2005
5. Z. Meng, T. Yamazaki and K. Sode “A molecularly imprinted catalyst designed by a computational approach in catalysing a transesterification process Biosensors and Bioelectronics, 20, pp. 1608-1075, 2004
6. H. Dong, A. j. Tong, L. D. Li “Syntheses of steroid-based molecularly imprinted polymers andtheir molecular recognition study with spectrometric detection Spectrochimica Acta Part A 59, pp. 279-284, 2003
7. T. A. Sergeyeva, H. Matuschewski, S. A. Piletsky, J. Bendig, U. Schedler and M. Ulbricht “Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization Journal of Chromatography A, 907, pp. 89-99, 2001
8. K. Möller, U. Nilsson and C. Crescenzi “Investigation of matrix effects of urine on a molecularly imprinted solid-phase extraction” Journal of Chromatography B 811, pp. 171-176, 2004
9. T. Yamazakia, E. Yilmaz, K. Mosbachb and K. Sodea “Towards the use of molecularly imprinted polymers containingimidazoles and bivalent metal complexes for the detection anddegradation of organophosphotriester pesticides” Analytica Chimica Acta, 435, pp.209-214, 2003
10. N. Hilal, V. Kochkodan, G. Busca, O. Kochkodan and B. P. Atkin “Thin layer composite molecularly imprinted membranes for selective separation of cAMP” Separation and Purification Technology, 31, pp. 281-289, 2003
11. J. Kuijt, F. Ariese, U. A. T. Brinkman and C. Gooijer “Room temperature phosphorescence in the liquid state as a tool in analytical chemistry” Analytica Chimica Acta, 488, pp.135-171, 2003
12. R. H. Schmidt, A. Belmont and K. Haupt “Porogen formulations for obtaining molecularly imprinted polymers with optimized binding properties” Analytica Chimica Acta, 542, pp.118-124, 2005
13. J. P Lai, R. Niessner and D. Knopp “Benzo[a]pyrene imprinted polymers: synthesis, characterization and SPE application in water and coffee samples” Analytica Chimica Acta,522, pp. 137-144, 2004
14. M. Andaç, R. Say and A. Denizli “Molecular recognition based cadmium removal from human plasma Journal of Chromatography B, 811, pp. 119-126, 2004
15. Y. Egawa, Y. Shimura, Y. Nowatari, D. Aiba and K. Juni Preparation of molecularly imprinted cyclodextrin microspheres International Journal of Pharmaceutics, 293, pp.165-170, 2005
16. M. Lehmann, M. Dettling, H. Brunner and G. E.M. Tovar “Affinity parameters of amino acid derivative binding to molecularly imprinted nanospheres consisting of poly[(ethylene glycol dimethacrylate) -co-(methacrylic acid)]” Journal of Chromatography B, 808, pp. 43-50 2004
17. P. B. Luppa, L. J. Sokoll and D. W. Chan “Immunosensors—principles and applications to clinical chemistry ” Clinica Chimica Acta, 314, 2001, pp. 1-26, 2001
18. L. Feng , Y. Liu , Y. Tan and J. Hu “Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers” Biosensors and Bioelectronics, 19, pp. 1513-1519, 2004
19. B. S. Ebarvia, S. Cabanill and F. Sevilla “Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electrosynthesized polypyrrole” Talanta, 66, pp. 145-152, 2005
20. N. W. Turnera, E. V. Piletskaa, K. Karima, M. Whitcombeb, M. Malecha, N. Magana, C. Baggianic and S. A. Piletskya “Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A” Biosensors and Bioelectronics, 20, pp. 1060-1067, 2004
21. T. Y. Guo, Y. Q. Xia, G. J. Hao, M. D. Song and B. H. Zhang “Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads” Biomaterials, 25, pp. 5905-5912, 2004
22. J. H. Dahlstrom, S. Shoravi, S. Wikman and I. A. Nicholls “Stereoselective reduction of menthone by molecularly imprinted polymers” Tetrahedron: Asymmetry, 15, pp. 2431-2436, 2004
23. M. Kawaguchi, Y. Hayatsu, H. Nakata, Y. Ishii, R. Ito, K. Saito and H. Nakazawa “Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography-mass spectrometryfor trace analysis of bisphenol A in water sample” Analytica Chimica Acta, 539, pp. 83-89, 2005
24. S. G. Hu, L. Li, and X. W. He “Comparison of trimethoprim molecularly imprinted polymers in bulk and in sphere as the sorbent for solid-phase extraction and extraction of trimethoprim from human urine and pharmaceutical tablet and theirdetermination by high-performance liquid chromatography” Analytica Chimica Acta, 537, pp. 215-222, 2005
25. R. E. Fairhurst , C. Chassaing, R. F. Venn and A. G. Mayes “A direct comparison of the performance of ground, beaded and silica-grafted MIPs in HPLC and turbulent flow Chromatography applications” Biosensors and Bioelectronics, 20, pp. 1098-1105 2004
26. A. Brüggemann, A. Visnjevski, R. Burch and P. Patel “Selective extraction of antioxidants with molecularly imprinted polymers” Analytica Chimica Acta, 504, pp. 81-88 2004
27. T. Blomgren, C. Berggren, A. Holmberg , F. Larsson , B. Sellergren and K Ensing “Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection” Journal of Chromatography A, 975, pp. 157-164, 2002
28. C. Hwang, W. C Lee “Chromatographic characteristics of cholesterol -imprinted polymers prepared by covalent and non-covalent imprinting methods” Journal of Chromatography A, 962 pp. 69-78, 2002
29. C. Hwang, W. C. Lee “Chromatographic resolution of the enantiomers ofphenylpropanolamine by using molecularly imprinted polymer as the stationary phase” Journal of Chromatography B, 765,pp. 45-53, 2001
30. T. Baggiani , G. Giraudi , C. Giovannoli , F. Trotta and A. Vanni “Chromatographic characterization of molecularly imprinted polymers binding the herbicide 2,4,5-trichlorophenoxyacetic acid” Journal of Chromatography A, 883, pp. 119-126, 2000
31. S. D. Plunkett and F. H. Arnold “Molecularly imprinted polymers on silica: selective supports for high-performance ligand-exchange chromatography” Journal of Chromatography A, 708,pp. 19-29, 1995
32. M. Kempe and K. Mosbach “Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases” Journal of Chromato graphy A, 691, pp. 317-323, 1995
33. J. M. Lin, T. Nakagama, K. Uchiyama and T. Hobo “Capillary electrochromatographic separation of amino acid enantiomers using on-column prepared molecularly imprinted polymer” Journal of Pharmaceutical and Biomedical Analysis, 15, pp. 1351-1358, 1997
34. H. Kubo, N. Yoshioka and T. Takeuchi “Fluorescent imprinted polymersprepared with 2-acrylamidoquinoline as a signaling monomer” Organic Latters, 7, pp. 359-362, 2005
35. B. Wandelt, P. Turkewitsch, S. Wysocki and G. D. Darling “Fluorescent molecularly imprinted polymer studied by time-resolved fluorescence spectroscopy” Polymer, 4, pp. 2777-2785, 2002
36. H. Zhang, W. Verboom and D. N. Reinhoudt “9-(Guanidinomethyl) -10- vinylanthracene: a suitable fluorescent monomer for MIPs” Tetrahedron Letters, 42, pp. 4413-4416, 2001
37. F. Ersoza, A. Denizlib, A. Ozcana and R. Say “Molecularly imprinted ligand -exchange recognition assay of glucose by quartz crystal microbalance” Biosensors and Bioelectronics, 20, pp. 2197-2202, 2005
38. M. Zougagh, A. Rios and M. Valcarcel “Automatic selective determination of caffeine in coffee and tea samples by using a supported liquid membrane-modified piezoelectric flow sensor with molecularly imprinted polymer” Analytica Chimica Acta, 539, pp. 117-124, 2005
39. L. Feng, Y. Liu, Y. Tan, J. Hua “Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers” Biosensors and Bioelectronics, 19, pp. 1513-1519, 2004
40. Y. Fu and H. O. Finklea “Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers” Analytical Chemistry, 75, pp. 5387-5393, 2003
41. K. Das, J. Penelle and V. M. Rotello “Selective picomolar detection of hexachlorobenzene in water using a quartz crystal microbalance coated with a olecularly imprinted polymer thin film” Langmuir, 19, pp. 3921-3925, 2003
42. C. J. Percival, S. Stanley, M. Galle, A. Braithwaite, M. I. Newton, G. McHale and W. Hayes “Molecular-imprinted, polymer-coated quartz crystal microbalances for the detection of terpenes” Analytical Chemistry, 73, pp. 4225-4228, 2001
43. A. Ramanavicienea and A. Ramanaviciusa “Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins” Biosensors and Bioelectronics, 20, pp. 1076-1082, 2004
44. L. M. Kindschy and E. C. Alocilja “A molecularly imprinted polymer on Indium Tin oxide and silicon” Biosensors and Bioelectronics, 20, pp. 2163-2167, 2005
45. H. H. Weetall and K. R. Rogers “Preparation and characterization of molecularly imprinted electropolymerized carbon electrodes” Talanta, 62, pp. 329-335, 2004
46. M. C. B. Lopez, M. J. L. Castanon, A. J. M. Ordieres and P. T. Blanco “Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes” Biosensors and Bioelectronics, 18, pp. 353-362, 2003
47. T. P. Delaney, V. M. Mirsky, M. Ulbricht and O. S. Wolfbeis “Impedometric herbicide chemosensors based on molecularly imprinted polymers” Analytica Chimica Acta, 435, pp. 157-162, 2001
48. S. A. Piletsky, E. V. Piletskaya, T. A. Sergeyeva, T. L. Panasyuk and A. V. Elskaya “Molecularly imprinted self-assembled films with specificity to cholesterol” Sensors and Actuators B, 60, pp. 216-220, 1999
49. H. C. Huang, C. I. Lin, A. K. Joseph, Y. D. Lee “Photo-lithographically impregnated and molecularly imprinted polymer thin film for biosensor applications” Journal of Chromatography A, 1027, pp. 263-268, 2004
50. R. Kiełczynski and M. Bryjak “Molecularly imprinted membranes for cinchona alkaloids separation” Separation and Purification Technology, 41, pp. 231-235, 2005
51. R. Suedeea, T. Srichanab, T. Chuchomea and U. Kongmarka “Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water” Journal of Chromatography B, 811, pp. 191-200, 2004
52. R. Malaisamy and M. Ulbricht “Evaluation of molecularly imprinted polymer blend filtration membranes under solid phase extraction conditions” Separation and Purification Technology, 39, pp. 211-219, 2004
53. M. Ramamoorthy and M. Ulbricht “Molecular imprinting of cellulose acetate-sulfonated polysulfone blend membranes for Rhodamine B by phase inversion technique” Journal of Membrane Science, 217, pp. 207-214, 2003
54. M. Yoshikwa, T. Fujisawa, J. I. Izumi, T. Kitao and S. Sakmoto “Molecularly imprinted polymeric membranes involving tetrapeptide EQEL derivatives as chiral-recognition sites toward amino acids” Analytica Chimica Acta, 365, pp.59-67, 1998
55. T. A. Sergeyeva, H. Matuschewski, S. A. Piletsky, J. Bendig, U. Schedler, and M. Ulbricht “Molecularly imprinted polymer membranes for substance-selectivesolid-phase extraction from water by surface photo-grafting polymerization” Journal of Chromatography A, 907 pp. 89-99, 2002
56. K. Hattori, M. Hiwatari, C. Iiyama, Y. Yoshimi, F. Kohori, K. Sakai and S. A. Piletsky “Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization” Journal of Membrane Science, 233, pp. 169-173, 2004
57. N. Hilal and V. Kochkodan “Surface modified microfiltration membranes with molecularly recognising properties” Journal of Membrane Science, 213, pp. 97-113, 2003
58. V. Kochkodan, W. Weigel and M. Ulbricht “Molecularly imprinted composite membranes for selective binding of desmetryn from aqueous solutions” Desalination, 149, pp. 323-328, 2002
59. P. S. Reddy, T. Kobayashi, M. Abe and N. Fujii “Molecular imprinted Nylon-6 as a recognition material of amino acids” European Polymer Journal, 38, pp. 521-529, 2002
60. T. A. Sergeyeva, S.A. Piletskya, A. A. Brovkob, E. A. Slinchenkoa, L. M. Sergeevab and A.V. El'skayaa “Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection” Analytica Chimica Acta, 392, pp. 105-111, 1999
61. E. Schneiderman and A. M. Stalcup “Cyclodextrins: a versatile tool in separation science” Journal of Chromatography B, 745, pp. 83-102, 2002
62. N. Blanchemain, S. Haulon, B. Martel, M. Traisnel, M. Morcellet and H. F. Hildebrand “Vascular PET prostheses surface modification with cyclodextrin coating: development of a new drug delivery system” European Journal of Vascular and Endovascular Surgery, 29, pp. 628-632, 2005
63. C. Yue, J. Poffb, M. E. Cortiesb, R. D. Sinisterra, C. B. Faris. P. Hildgenb, R. Langerb and V. P. Shastrib “A novel polymeric chlorhexidine delivery device for the treatment of periodontal disease” Biomaterials, 25, pp. 3743-3750, 2004
64. B. Evrarda, P. Bertholeta, M. Guedersc, M. P. Flamentb, G. P. L. Delattrea,A. Gayotb, P. Letermeb, J. M. Foidartc, D. Cataldo “Cyclodextrins as a potential carrier in drug nebulization” Journal of Controlled Release, 96, pp. 403- 410, 2004
65. C. M. Fernandes, P. Ramos, A. C. Falcao and F. J. B. Veiga “H ydrophilic and hydrophobic cyclodextrins in a new sustained release oral formulation of nicardipine: in vitro evaluation and bioavailability studies in rabbits” Journal of Controlled Release, 88, pp. 127-134, 2003
66. T. Loftsson and M. Masson “Cyclodextrins in topical drug formulations: theory and practice” International Journal of Pharmaceutics, 225, pp. 15-30, 2001
67. T. Srichana, R. Suedee and W. Reanmongkol “Cyclodextrin as a potential drug carrier in salbutamol dry powder aerosols: the in-vitro deposition and toxicity studies of the complexes” Respiratory Medicene, 95, 513-519, 2001
68. F. W. H. M. Merkus, J. C. Verhoef, E. Marttin, S. G. Romeijn, P. H. M. V. D. Kuy and W. A. J. J. Hermens and N. G. M. Schipper “Cyclodextrins in nasal drug delivery” Advanced Drug Delivery Reviews, 36, pp. 41-57, 1999
69. F. Hirayama and K. Uekama “Cyclodextrin-based controlled drug release system” Advanced Drug Delivery Reviews, 36, pp. 125-141, 1999
70. B. McCormack and G. Gregoriadis “Drugs-in-cyclodextrins -in-liposomes: an approach to controlling the fate of water insoluble drugs in vivo” International Journal of Pharmaceutics 162, pp. 59-69, 1998
71. B. McCormack and G. Gregoriadis “Comparative studies of the fate of free and liposome-entrapped hydroxypropyl-/3-cyclodextrin/drug complexes after intravenous injection into rats: implications in drug delivery” Biochimica et Biophysica Acta, 1291, pp. 237-244, 1996
72. G. Du, S. Zhang, J. Xie, B. Zhong and K. Liu “Chiral separation of anticholinergic drug enantiomers in nonaqueous capillary electrophoresis” Journal of Chromatography A, 1074, pp. 195-200, 2005
73. E. Takahisa and K. H. Engel “2,3-Di-O-methoxymethyl-6-O-tert-butyl dimethylsilyl-g-cyclodextrin: a new class of cyclodextrin derivatives for gas chromatographic separation of enantiomers” Journal of Chromatography A, 1063, pp. 181-192, 2005
74. X. Lin, C. Zhu, A. Hao “Evaluation of newly synthesized derivative of cyclodextrin for the capillary electrophoretic separation” Journal of Chromatography A, 1059, pp. 181-189, 2004
75. A. Kavalirova, M. Pospisolova and R. Karlicek “Enantiomeric analysis of rivastigmine in pharmaceuticals by cyclodextrin-modified capillary zone electrophoresis” Analytica Chimica Acta, 525, pp. 43-51, 2004
76. J. Paris, C. M. Jouve, D. Nuel, P. Moulin, F. Charbit “Enantioenrichment by pervaporation” Journal of Membrane Science, 237, pp. 9-14, 2004
77. K. Pihlainen and R. Kostiainen “Effect of the eluent on enantiomer separation of controlled drugs by liquid chromatography – ultraviolet absorbance detection-electrosprayionisation tandem mass spectrometry using vancomycin and native b-cyclodextrin chiral stationary phases” Journal of Chromatography A, 1033, pp. 91-99, 2004
78. P. Zakaria, M. Macka and P. R. Haddad “Selectivity control in the separation of aromatic amino acid enantiomers with sulphated b-cyclodextrin” Journal of Chromatography A, 1031, pp. 179–186, 2004
79. T. V. Goel, J. G. Nikelly, R. C. Simpson and B. K. Matuszewski “Chiral separation of labetalol stereoisomers in human plasma by capillary electrophoresis” Journal of Chromatography A, 1027, pp. 213-221, 2004
80. D. D. Schumacher, C. R. Mitchell, T. L. Xiao, R. V. Rozhkov, R. C. Larock and D. W. Armstrong “Cyclodextrin-based liquid chromatographic enantiomeric separation of chiral dihydro furocoumarins, an emerging class of medicinal compounds” Journal of Chromatography A, 1011, pp. 37-47, 2003
81. T. Ruderisch , J. Pfeiffer and V. Schurig “Mixed chiral stationary phase containing modified resorcinarene and b-cyclodextrin selectors bonded to a polysiloxane for enantioselective gas chromatography” Journal of Chromatography A, 994, pp. 127-135, 2003
82. H. Asanuma, M. Kakazu, M. Shibata, T. Hishiya and M. Komiyama “Synthesis of molecularly imprinted polymer of b-cyclodextrin for the efficient recognition of cholesterol” Supramolecular Science, 5, pp. 417-421, 1998
83. T. Hishiya, M. Shibata, M. Kakazu, H. Asanuma, and M. Komiyama “Molecularly imprinted cyclodextrins as selective receptors for steroids” Macromolecules, 32, pp. 2265-2269, 1999
84. S. A. Piletsky, H. S. Andersson and I. A. Nicholls “Combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers” Macromolecules, 32, pp. 633-636, 1999
85. Q. Fu, H. Sanbe, C. Kagawa, K. K. Kunimoto and J. Haginaka “Uniformly sized molecularly imprinted polymer for (S)-Nilvadipine. Comparison of chiral recognition ability with HPLC chiral stationary phases based on a protein” Analytical Chemistry, 75, pp. 191-198, 2003
86. C. Baggiani, L. Anfossi, C. Giovannoli and C. Tozzi “Multivariate analysis of the selectivity for a pentachlorophenol-imprinted polymer” Journal of Chromatography B, 804, pp. 31-41, 2004
87. G. Theodoridis, G. Konsta and C. Bagia “Synthesis and evaluation of molecularly imprinted polymers for enalapril and lisinopril, two synthetic peptide anti-hypertensive drugs” Journal of Chromatography B, 804, pp. 43-51, 2004
88. K. J. Shea and D. A. Loy “Bridged polysilsesquioxanes. Molecular -engineered hybrid organic-inorganic materials” Chemistry Materials 13, pp. 3306-3319, 2001
89. C. Pinel, P. Loisil, P. Gallezot “Preparation and utilization of molecularly imprinted silicas” Advanced Materials, 9, pp. 582-585, 1997
90. T. Katz and M. E. Davis “Molecular imprinting of bulk, microporous silica” Nature, 403, pp. 286-289, 2000
91. F. L. Dickert and O. Hayden “Bioimprinting of polymers and sol-gel phases selective detection of yeasts with imprinted polymers” Analytical Chemistry, 74, pp. 1302-1306, 2002
92. S. Huana, H. Chua, C. Jiao, G. Zeng, G. Huang, G. Shen, R. Yu “Selective electrochemical molecular recognition of benzenediol isomers using molecularly imprinted TiO2 film electrodes” Analytica Chimica Acta, 506, pp. 31-39, 2004
93. M. Wyss and R. Daouk “Creatine and creatinine metabolism” Physiological Reviews, 80, pp. 1108-1213, 2000
94. K. G. Blass “Reactivity of creatinine with alkaline 3,5-dinitrobenzoate: A new fluorescent kidney function test” Clinical Biochemistry, 28, pp. 107-111, 1995
95. T. Osaka, S. Komaba, A. Amano, Y. Fujino and H. Mori “Electrochemical molecular sieving of the polyion complex film for designing highly sensitive biosensor for creatinine” Sensors and Actuators B, 65, pp. 58-63, 2000
96. G. F. Khana and W. Wernet “A highly sensitive amperometric creatinine sensor” Analytica Chimica Acta, 351, pp. 151-158, 1997
97. Y. D. Ying “Simultaneous determination of creatine, uric acid, creatinine and hippuric acid in urine by high performance liquid chromatography” Biomedical Chromatography, 12, pp. 47-49, 1998
98. K. Sreenivasan and R. Sivakumar “Interaction of molecularly imprinted polymers with creatinine” Journal of Applied Polymer Science, 66 , pp. 2539-2542, 1997
99. T. P. Delaney, V. M. Mirsky and O. S. Wolfbeis “Capacitive creatinine sensor based on a photografted molecularly imprinted polymer” Electroanalysis, 14, pp. 221-224, 2002
100. S. Subrahmanyam , S. A. Piletsky, E. V. Piletska, B. Chen, K. Karim and A. P. F. Turner “Bite-and-Switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine” Biosensors and Bioelectronics, 16, pp. 631-637, 2001
101. M. Subat, A.S. Borovik, and B. Konig, “Synthetic creatinine receptor: imprinting of a lewis acidic zinc(II)cyclen binding site to shape its molecular recognition Selectivity” Journal of American Chemistry Society, 126, pp. 3185-3190, 2004
102. G. Crinia, C. Cosentino, S. Bertini, A. Naggia, G. Torri, C. Vecchi, L. Janus and M. Morcellet “Solid state NMR spectroscopy study of molecular motion in cyclomaltoheptaose (b-cyclodextrin) crosslinked with epichlorohydrin” Carbohydrate Research, 308, pp. 37-45, 1998
103. Hsuan-Ang Tsai, Mei-Jywan Syu “Synthesis of creatinine-imprinted poly(b-cyclodextrin) for the specific binding of creatinine” Biomaterials, 26, pp. 2759-2766, 2005
104. Hsuan-Ang Tsai, Mei-Jywan Syu “Synthesis and characterization of creatinine imprinted poly(4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor” Analytica Chimica Acta, pp. 107-116, 2005