簡易檢索 / 詳目顯示

研究生: 蔡軒昂
Tsai, Hsuan-Ang
論文名稱: 分子模版材料之製備與對肌酸酐之特異性吸附
Synthesis of Molecularly Imprinted Materials for the Specific Binding of Creatinine
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 118
中文關鍵詞: 4-乙烯吡啶溶膠-凝膠法.肌酸酐肌酸模印因子分子辨識系統分子模版高分子β-環糊精
外文關鍵詞: creatine, creatinine, 4-vinylpyridine, β-cyclodextrin, molecularly imprinted polymer, molecular recognition, imprinting factor
相關次數: 點閱:85下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   分子辨識系統在生化界上的應用相當廣泛,但由於天然的分子辨識系統常因為外在因素的影響,如:pH 值、有機溶劑和溫度的影響下而造成分子辨識系統無法達到預期的效果。近十幾年來分子模版高分子(molecularly imprinted polymer) 的理論已被廣泛的應用在分子辨識系統上。所謂的分子模版高分子主要是利用官能基單體與目標物或目標物之相似物即分子模版進行共價或非共價鍵鍵結,之後再利用交聯劑來進行交聯聚合。當聚合完成後以適當溶劑將高分子中的分子模版洗出。洗出模版後的高分子本身則具有與分子模版形狀相近或具互補作用力的孔洞。具這樣特性的孔洞即可作為分子辨識系統的最主要依據。

      在本論文中,嘗試利用各種不同的分子模版高分子製備方法,包括:(1) 以β-環糊精(β−cyclodedxtrin, β−CD) 作為官能基單體,環氧氯丙烷(Epichlorohydrin, EPI) 為交聯劑所製備之分子模版高分子、(2) 以4-乙烯吡啶(4-vinylpyridine, 4-Vpy) 為官能基單體, 二乙烯基苯(divinylbenzene, DVB) 為交聯劑所製備之分子模版高分子、(3) 利用溶膠-凝膠法(sol-gel) 所製備之分子模版高分子對於肌酸酐進行作辨識能力測試。

      製備之分子模版高分子利用掃描式電子顯微鏡(SEM)、FT-IR 以及Solid state NMR 鑑定其化學結構,並且判定肌酸酐是否包埋於高分子中。同時利用N-羥基丁二硫亞氨(N-hydroxysuccinimide) (相似物)、咯烷酮(2-pyrrolidinone) (相似物)、肌酸(creatine) (共存物)和肌酸酐(creatinine)以雙成份或三成份共存混合後,測試上述之模版高分子在不同成份之混合液中對肌酸酐之辨識能力。而在此外,希望製備的分子模版吸附材料能進一步應用在臨床上,本論文中也將分子模版高分子應用在人血清中,以測試其在血清中辨識肌酸酐的能力。

      由結果中可以觀察並得到在以β-環糊精為官能基單體所製備的高分子中,當製備條件β-環糊精/環氧氯丙烷=1/10 (molar ratio) 和β-環糊精/肌酸酐=3/2 (molar ratio) 時可得到最佳的模印因子(imprinting factor) 為4.06 ± 0.98。而在雙成份與三成份的混合液分析中對於肌酸酐的最佳選擇性則分別為2.43 ± 0.20 與2.87 ± 0.39。在鹽類影響以及遮蓋(capping) 修飾實驗中得到此分子模版高分子之氫鍵作用力會影響對於肌酸酐的專一辨識能力。在以4-乙烯吡啶為官能基單體所製備的高分子中,利用其較微弱的氫鍵作用力用以突顯其分子模版孔洞效應,最後得到最佳的模印因子為3.25。為探求其此分子模版高分子在混合液中對於肌酸酐的辨識能力,分別選用了與肌酸酐在結構上相似物質以及其在血清中的共存物當作競爭吸附的一個模式,其結果可得到對於肌酸酐最佳的選擇性為3.90± 0.01。再進一步的測試中了解此分子模版高分子在人血清之複雜成份環境下亦具有辨識肌酸酐的能力。最後經由上述實驗的結果分析後,採用無機溶膠-凝膠法(sol-gel) 所製備之分子模版高分子希望能藉此提高其專一辨識肌酸酐的能力。經實驗結果顯示在以水為溶劑下吸附肌酸酐的效果為最好,其模印因子可高達7.18 ± 0.05。在定濃度混合液的分析結果中,分子模版高分子對於肌酸酐最佳的選擇性則分別為8.75 ± 0.38 (雙成份混合液) 和5.19 ± 0.54 (三成份混合液)。

      由以上所有的製備與測試結果中可以結論出對於分子量較小且為極性之肌酸酐分子模版,於分子模版高分子的製備方法上,顯示是以無機方法製備出的材料較有機製備法,與模版性質與分子專一辨識能力兩方面有較佳的表現,但因模版材料之製備條件中變數相當多,因此僅就本系統之結果做此結論,至於模版無機材料是否優於模版有機材料則尚待進一步確認。

     The approach of molecular recognition based on synthetic materials has beenwidely applied in the biological research. To utilize nature molecular ecognitionbiological system exists many problems, such as variation of pH environment,organic solvents and high temperature effects, which will then result in anunstable system. One approach known as molecular imprinting was developed to overcome the above-mentioned disadvantages occurred in nature molecularrecognition systems. Molecularly imprinted polymer (MIP), a kind of molecular recognition materials, is generally synthesized from using certain functional monomer to copolymerize with a cross-linking agent in the presence of a targetmolecule (template). The functional monomer forms a complex with the template molecule first and then the polymerization is propagated under proper condition. After the polymerization, a proper solvent is applied to wash out the imprinted templates so that specific cavity is formed. The polymer is then expected to be able to provide the specific recognition sites for the template molecule.

     In this study, by using creatinine as the template molecule, three different molecularly imprinted materials were prepared including the imprinted poly(β-cyclodextrin-co-epichlorohydrin), the imprinted poly(4-vinylpyridine-co-divinylbenzene) and the imprinted sol-gel. Using these molecularly imprinted materials respectively, we expected that the specific recognition of creatinine in different mixture solutions under the interference of the other compounds could be accomplished.FT-IR, SEM, and Solid state NMR were applied to identify the chemical structures and imprinting effect of the synthetic polymers.Creatinine and other three compounds, N-hydorxysuccinimide, 2-pyrrolidinone and creatine, were used to comprise the mixture solutions for the investigation of the selectivity factors of the molecularly imprinted polymers thus repared. For the further evaluation of medical application, serum samples of different creatinine concentrations were employed in the adsorption experiments with molecularly imprinted polymers as the adsorbents to test the feasibility of MIP for clinical use.

     From the experimental results of imprinted poly(β-cyclodextrin-co-epichlorohydrin), it indicated that with a molar ratio of monomer to template, 3:2, and monomer to cross-linking agent, 1:10, the imprinted polymer was successfully prepared. The imprinting factor was 4.06 ± 0.98. In the adsorption results from mixtures, the best selectivity for creatinine by MIP in binary and ternary solutions were 2.43±0.20 and 2.87±0.39,respectively.According to the results of salt effect and capping effect, it was pointed out that hydrogen binding played an important factor for specific recognition of creatinine.

     From the experimental results of imprinted poly(4-vinylpyridine-co-divinylbenzene), best imprinting factor of 3.25 was achieved. In the multi-component adsorption results, the best selectivity for creatinine by MIP were 3.90 ± 0.01. Furthermore, this MIP was also applied to human seum for the recognition of creatinine.

     From the results of sol-gel MIP, it could be seen that water was the better solvent compared to methanol. The imprinting factor was 7.18±0.05. In the multi-component adsorption results, the best selectivity for creatinine by MIP in binary and ternary mixture solutions were 8.75±0.38 and 5.19±0.54, respectively. Comparing the results between inorganic sol-gel MIP and synthesized organic MIP, it could be seen that inorganic sol-gel MIP may have better recognition ability for small size template, such as creatinine.

    VI 總目錄 中文摘要............................................................................................................ I 英文摘要..........................................................................................................III 誌謝...................................................................................................................V 總目錄............................................................................................................ VI 表目錄..............................................................................................................X 圖目錄........................................................................................................... XII 第一章緒論......................................................................................................1 1.1 分子辨識系統.............................................................................................1 1.1.1 抗體-抗原反應.................................................................................1 1.1.2 酵素催化反應..................................................................................1 1.2 分子模版高分子.................................................................................3 1.2.1 單體..................................................................................................5 1.2.2 交聯劑..............................................................................................7 1.2.3 起始劑..............................................................................................7 1.2.4 溶劑..................................................................................................7 1.2.5 聚合方式..........................................................................................7 1.2.6 分子模版高分子的應用..................................................................9 1.3 以β-環糊精(β-cyclodextrin, β-CD) 為單體之分子模版高分子.12 1.3.1 環糊精............................................................................................12 1.3.2 藥物釋放系統................................................................................12 1.3.3 分離純化........................................................................................12 1.3.4 分子模版β-環糊精(β-CD) 高分子............................................12 1.4 以4-乙烯吡啶(4-vinylpyridine, 4-Vpy) 為單體之分子模版高分子..14 1.4.1 固相萃取........................................................................................14 1.5 溶膠-凝膠(Sol-gel) 分子模版高分子...................................................15 1.6 肌酸酐(Creatinine)................................................................................ 16 1.6.1 光學測量法(又稱為Jaffe reaction)............................................ 16 1.6.2 酵素法............................................................................................16 VII 1.6.3 高效能液相層析(HPLC) 法.......................................................17 1.6.4 分子模版高分子............................................................................18 1.7 研究動機與目的...............................................................................21 第二章實驗方法、藥品、儀器與原理........................................................22 2.1 肌酸酐模版高分子之製備、定性和吸附................................................22 2.1.1 β-環糊精(β-Cyclodextrin)-co-環氧氯丙烷(epichlorohydrin) 肌酸酐模板高分子之製備.........................................................22 2.1.2 以不同單體/分子模板比例製備之β-環糊精-co-環氧氯丙烷子 模版高分子其模印因子(imprinting factor) 之探討...............21 2.1.3 以不同單體/交聯劑比例製備β-環糊精-co-環氧氯丙烷分子模 版高分子吸附肌酸酐之探討.....................................................25 2.1.4 β-環糊精-co-環氧氯丙烷分子模版高分子對肌酸酐於混合溶 液之特異性吸附探討.................................................................25 2.1.5 鹽類對於β-環糊精-co-環氧氯丙烷分子模版高分子特異性吸 附之影響效應.............................................................................25 2.2.1 4-乙烯吡啶(4-Vinylpyridine)-co-二乙烯基苯(divinylbenzene) 肌酸酐模版高分子之製備…………………………………….26 2.2.2 4-乙烯吡啶-co-二乙烯基苯分子模版高分子之定性分析……26 2.2.3 4-乙烯吡啶-co-二乙烯基苯分子模版高分子之模印因子 (imprinting factor) 之探討…………………………………….26 2.2.4 4-乙烯吡啶-co-二乙烯基苯分子模版高分子對肌酸酐混合溶液 之特異性吸附探討......................................................................28 2.2.5 4-乙烯吡啶-co-二乙烯基苯分子模版高分子對肌酸酐於人血清 之特異性吸附探討……………………………………….……28 2.3.1 溶膠-凝膠(Sol-gel) 肌酸酐模版高分子之製備......................28 2.3.2 溶膠-凝膠分子模版高分子之定性分析...................................28 2.3.3 以掃瞄式電子顯微鏡(SEM) 觀察溶膠-凝膠分子模版高分 子.................................................................................................30 2.3.4 溶膠-凝膠分子模版高分子在不同溶劑溶劑下其模印因子 (imprinting factor) 的探討..........................................................30 VIII 2.3.5 溶膠-凝膠分子模版高分子在不同溶劑下對肌酸酐混合溶液之 特異性吸附探討..........................................................................30 2.4 分析方法...........................................................................................30 2.4.1 利用HPLC 分析分子模版高分子在單一溶液或混合溶液中對 肌酐之特異性吸附......................................................................30 2.5 藥品...................................................................................................37 2.6 實驗儀器...........................................................................................38 第三章結果與討論........................................................................................39 3.1 β-環糊精-co-環氧氯丙烷分子模版高分子..............................................39 3.1.1 不同單體:交聯劑之比例所製備之β-環糊精-co-環氧氯丙烷分子 模版高分子對肌酸酐吸附之影響..................................................39 3.1.2 不同單體:分子模板之比例所製備之β-環糊精-co-環氧氯丙烷分 子模版高分子對肌酸酐其模印因子(Imprinting factor) 之影響40 3.1.3 β-環糊精-co-環氧氯丙烷分子模版高分子之動力學分析...........41 3.1.4 β-環糊精-co-環氧氯丙烷分子模版高分子對肌酸酐於混合溶液之 特異性吸附.......................................................................................41 3.1.5 鹽類對於β-環糊精-co-環氧氯丙烷分子模版高分子其特異性吸附 之影響結果.......................................................................................44 3.1.6 遮蓋修飾-β-環糊精-co-環氧氯丙烷分子模版高分子對肌酸酐於 混合溶液之特異性吸附之結果......................................................44 3.2 4-乙烯吡啶-co-二乙烯基苯分子模版高分子..........................................62 3.2.1 4-乙烯吡啶-co-二乙烯基苯分子模版高分子之製備結果.............62 3.2.2 4-乙烯吡啶-co-二乙烯基苯分子模版高分子高分子其對吸附肌酸 之模印因子(Imprinting factor)的探討............................................64 3.2.3 4-乙烯吡啶-co-二乙烯基苯分子模版高分子對肌酸酐於混合溶液 之特異性吸附探討..........................................................................66 3.2.4 4-乙烯吡啶-co-二乙烯基苯分子模版高分子對肌酸酐於人體血清 之特異性吸附探討..........................................................................68 3.3 溶膠-凝膠(Sol-gel) 分子模版高分子...................................................83 3.3.1 溶膠-凝膠分子模版高分子之製備結果討論.................................83 3.3.2 溶膠-凝膠分子模版高分子在不同溶劑下對肌酸酐之吸附探討.84 3.3.3 溶膠-凝膠分子模版高分子在不同溶劑溶劑下其模印因子 (imprinting factor) 之結果..............................................................84 3.3.4 溶膠-凝膠分子模版高分子在不同溶劑下對肌酸酐於混合溶液之 特異性吸附結果..............................................................................86 3.3.5 遮蓋修飾-溶膠-凝膠分子模版高分子於混合溶液中對於肌酸酐 之特異性吸附結果..........................................................................88 第四章結論..................................................................................................100 IX 參考文獻........................................................................................................106

    參考文獻

    1. E. T. Maggio “Enzyme-Immunoassay” CRC Press, Inc., Corporate Blad., N. W., Boca. Raton, Florida, 2000
    2. J. P. Gosling and L. V. Basso “Immunoassay” Butterworth-Heineann, 1994
    3. P. A. G. Cormack and A. Z. Elorza “Molecularly imprinted polymers: synthesis and characterization” Journal of Chromatography B, 804, pp. 173-182, 2004
    4. W. Dong, M. Yan, M. Zhang, Z. Liu and Y. Li “A computational and experimental investigation of the interaction between the template molecule and the functional monomer used in the molecularly imprinted polymer” Analytica Chimica Acta, 542, pp .186-192, 2005
    5. Z. Meng, T. Yamazaki and K. Sode “A molecularly imprinted catalyst designed by a computational approach in catalysing a transesterification process Biosensors and Bioelectronics, 20, pp. 1608-1075, 2004
    6. H. Dong, A. j. Tong, L. D. Li “Syntheses of steroid-based molecularly imprinted polymers andtheir molecular recognition study with spectrometric detection Spectrochimica Acta Part A 59, pp. 279-284, 2003
    7. T. A. Sergeyeva, H. Matuschewski, S. A. Piletsky, J. Bendig, U. Schedler and M. Ulbricht “Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization Journal of Chromatography A, 907, pp. 89-99, 2001
    8. K. Möller, U. Nilsson and C. Crescenzi “Investigation of matrix effects of urine on a molecularly imprinted solid-phase extraction” Journal of Chromatography B 811, pp. 171-176, 2004
    9. T. Yamazakia, E. Yilmaz, K. Mosbachb and K. Sodea “Towards the use of molecularly imprinted polymers containingimidazoles and bivalent metal complexes for the detection anddegradation of organophosphotriester pesticides” Analytica Chimica Acta, 435, pp.209-214, 2003
    10. N. Hilal, V. Kochkodan, G. Busca, O. Kochkodan and B. P. Atkin “Thin layer composite molecularly imprinted membranes for selective separation of cAMP” Separation and Purification Technology, 31, pp. 281-289, 2003
    11. J. Kuijt, F. Ariese, U. A. T. Brinkman and C. Gooijer “Room temperature phosphorescence in the liquid state as a tool in analytical chemistry” Analytica Chimica Acta, 488, pp.135-171, 2003
    12. R. H. Schmidt, A. Belmont and K. Haupt “Porogen formulations for obtaining molecularly imprinted polymers with optimized binding properties” Analytica Chimica Acta, 542, pp.118-124, 2005
    13. J. P Lai, R. Niessner and D. Knopp “Benzo[a]pyrene imprinted polymers: synthesis, characterization and SPE application in water and coffee samples” Analytica Chimica Acta,522, pp. 137-144, 2004
    14. M. Andaç, R. Say and A. Denizli “Molecular recognition based cadmium removal from human plasma Journal of Chromatography B, 811, pp. 119-126, 2004
    15. Y. Egawa, Y. Shimura, Y. Nowatari, D. Aiba and K. Juni Preparation of molecularly imprinted cyclodextrin microspheres International Journal of Pharmaceutics, 293, pp.165-170, 2005
    16. M. Lehmann, M. Dettling, H. Brunner and G. E.M. Tovar “Affinity parameters of amino acid derivative binding to molecularly imprinted nanospheres consisting of poly[(ethylene glycol dimethacrylate) -co-(methacrylic acid)]” Journal of Chromatography B, 808, pp. 43-50 2004
    17. P. B. Luppa, L. J. Sokoll and D. W. Chan “Immunosensors—principles and applications to clinical chemistry ” Clinica Chimica Acta, 314, 2001, pp. 1-26, 2001
    18. L. Feng , Y. Liu , Y. Tan and J. Hu “Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers” Biosensors and Bioelectronics, 19, pp. 1513-1519, 2004
    19. B. S. Ebarvia, S. Cabanill and F. Sevilla “Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electrosynthesized polypyrrole” Talanta, 66, pp. 145-152, 2005
    20. N. W. Turnera, E. V. Piletskaa, K. Karima, M. Whitcombeb, M. Malecha, N. Magana, C. Baggianic and S. A. Piletskya “Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A” Biosensors and Bioelectronics, 20, pp. 1060-1067, 2004
    21. T. Y. Guo, Y. Q. Xia, G. J. Hao, M. D. Song and B. H. Zhang “Adsorptive separation of hemoglobin by molecularly imprinted chitosan beads” Biomaterials, 25, pp. 5905-5912, 2004
    22. J. H. Dahlstrom, S. Shoravi, S. Wikman and I. A. Nicholls “Stereoselective reduction of menthone by molecularly imprinted polymers” Tetrahedron: Asymmetry, 15, pp. 2431-2436, 2004
    23. M. Kawaguchi, Y. Hayatsu, H. Nakata, Y. Ishii, R. Ito, K. Saito and H. Nakazawa “Molecularly imprinted solid phase extraction using stable isotope labeled compounds as template and liquid chromatography-mass spectrometryfor trace analysis of bisphenol A in water sample” Analytica Chimica Acta, 539, pp. 83-89, 2005
    24. S. G. Hu, L. Li, and X. W. He “Comparison of trimethoprim molecularly imprinted polymers in bulk and in sphere as the sorbent for solid-phase extraction and extraction of trimethoprim from human urine and pharmaceutical tablet and theirdetermination by high-performance liquid chromatography” Analytica Chimica Acta, 537, pp. 215-222, 2005
    25. R. E. Fairhurst , C. Chassaing, R. F. Venn and A. G. Mayes “A direct comparison of the performance of ground, beaded and silica-grafted MIPs in HPLC and turbulent flow Chromatography applications” Biosensors and Bioelectronics, 20, pp. 1098-1105 2004
    26. A. Brüggemann, A. Visnjevski, R. Burch and P. Patel “Selective extraction of antioxidants with molecularly imprinted polymers” Analytica Chimica Acta, 504, pp. 81-88 2004
    27. T. Blomgren, C. Berggren, A. Holmberg , F. Larsson , B. Sellergren and K Ensing “Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection” Journal of Chromatography A, 975, pp. 157-164, 2002
    28. C. Hwang, W. C Lee “Chromatographic characteristics of cholesterol -imprinted polymers prepared by covalent and non-covalent imprinting methods” Journal of Chromatography A, 962 pp. 69-78, 2002
    29. C. Hwang, W. C. Lee “Chromatographic resolution of the enantiomers ofphenylpropanolamine by using molecularly imprinted polymer as the stationary phase” Journal of Chromatography B, 765,pp. 45-53, 2001
    30. T. Baggiani , G. Giraudi , C. Giovannoli , F. Trotta and A. Vanni “Chromatographic characterization of molecularly imprinted polymers binding the herbicide 2,4,5-trichlorophenoxyacetic acid” Journal of Chromatography A, 883, pp. 119-126, 2000
    31. S. D. Plunkett and F. H. Arnold “Molecularly imprinted polymers on silica: selective supports for high-performance ligand-exchange chromatography” Journal of Chromatography A, 708,pp. 19-29, 1995
    32. M. Kempe and K. Mosbach “Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases” Journal of Chromato graphy A, 691, pp. 317-323, 1995
    33. J. M. Lin, T. Nakagama, K. Uchiyama and T. Hobo “Capillary electrochromatographic separation of amino acid enantiomers using on-column prepared molecularly imprinted polymer” Journal of Pharmaceutical and Biomedical Analysis, 15, pp. 1351-1358, 1997
    34. H. Kubo, N. Yoshioka and T. Takeuchi “Fluorescent imprinted polymersprepared with 2-acrylamidoquinoline as a signaling monomer” Organic Latters, 7, pp. 359-362, 2005
    35. B. Wandelt, P. Turkewitsch, S. Wysocki and G. D. Darling “Fluorescent molecularly imprinted polymer studied by time-resolved fluorescence spectroscopy” Polymer, 4, pp. 2777-2785, 2002
    36. H. Zhang, W. Verboom and D. N. Reinhoudt “9-(Guanidinomethyl) -10- vinylanthracene: a suitable fluorescent monomer for MIPs” Tetrahedron Letters, 42, pp. 4413-4416, 2001
    37. F. Ersoza, A. Denizlib, A. Ozcana and R. Say “Molecularly imprinted ligand -exchange recognition assay of glucose by quartz crystal microbalance” Biosensors and Bioelectronics, 20, pp. 2197-2202, 2005
    38. M. Zougagh, A. Rios and M. Valcarcel “Automatic selective determination of caffeine in coffee and tea samples by using a supported liquid membrane-modified piezoelectric flow sensor with molecularly imprinted polymer” Analytica Chimica Acta, 539, pp. 117-124, 2005
    39. L. Feng, Y. Liu, Y. Tan, J. Hua “Biosensor for the determination of sorbitol based on molecularly imprinted electrosynthesized polymers” Biosensors and Bioelectronics, 19, pp. 1513-1519, 2004
    40. Y. Fu and H. O. Finklea “Quartz crystal microbalance sensor for organic vapor detection based on molecularly imprinted polymers” Analytical Chemistry, 75, pp. 5387-5393, 2003
    41. K. Das, J. Penelle and V. M. Rotello “Selective picomolar detection of hexachlorobenzene in water using a quartz crystal microbalance coated with a olecularly imprinted polymer thin film” Langmuir, 19, pp. 3921-3925, 2003
    42. C. J. Percival, S. Stanley, M. Galle, A. Braithwaite, M. I. Newton, G. McHale and W. Hayes “Molecular-imprinted, polymer-coated quartz crystal microbalances for the detection of terpenes” Analytical Chemistry, 73, pp. 4225-4228, 2001
    43. A. Ramanavicienea and A. Ramanaviciusa “Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins” Biosensors and Bioelectronics, 20, pp. 1076-1082, 2004
    44. L. M. Kindschy and E. C. Alocilja “A molecularly imprinted polymer on Indium Tin oxide and silicon” Biosensors and Bioelectronics, 20, pp. 2163-2167, 2005
    45. H. H. Weetall and K. R. Rogers “Preparation and characterization of molecularly imprinted electropolymerized carbon electrodes” Talanta, 62, pp. 329-335, 2004
    46. M. C. B. Lopez, M. J. L. Castanon, A. J. M. Ordieres and P. T. Blanco “Voltammetric sensor for vanillylmandelic acid based on molecularly imprinted polymer-modified electrodes” Biosensors and Bioelectronics, 18, pp. 353-362, 2003
    47. T. P. Delaney, V. M. Mirsky, M. Ulbricht and O. S. Wolfbeis “Impedometric herbicide chemosensors based on molecularly imprinted polymers” Analytica Chimica Acta, 435, pp. 157-162, 2001
    48. S. A. Piletsky, E. V. Piletskaya, T. A. Sergeyeva, T. L. Panasyuk and A. V. Elskaya “Molecularly imprinted self-assembled films with specificity to cholesterol” Sensors and Actuators B, 60, pp. 216-220, 1999
    49. H. C. Huang, C. I. Lin, A. K. Joseph, Y. D. Lee “Photo-lithographically impregnated and molecularly imprinted polymer thin film for biosensor applications” Journal of Chromatography A, 1027, pp. 263-268, 2004
    50. R. Kiełczynski and M. Bryjak “Molecularly imprinted membranes for cinchona alkaloids separation” Separation and Purification Technology, 41, pp. 231-235, 2005
    51. R. Suedeea, T. Srichanab, T. Chuchomea and U. Kongmarka “Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water” Journal of Chromatography B, 811, pp. 191-200, 2004
    52. R. Malaisamy and M. Ulbricht “Evaluation of molecularly imprinted polymer blend filtration membranes under solid phase extraction conditions” Separation and Purification Technology, 39, pp. 211-219, 2004
    53. M. Ramamoorthy and M. Ulbricht “Molecular imprinting of cellulose acetate-sulfonated polysulfone blend membranes for Rhodamine B by phase inversion technique” Journal of Membrane Science, 217, pp. 207-214, 2003
    54. M. Yoshikwa, T. Fujisawa, J. I. Izumi, T. Kitao and S. Sakmoto “Molecularly imprinted polymeric membranes involving tetrapeptide EQEL derivatives as chiral-recognition sites toward amino acids” Analytica Chimica Acta, 365, pp.59-67, 1998
    55. T. A. Sergeyeva, H. Matuschewski, S. A. Piletsky, J. Bendig, U. Schedler, and M. Ulbricht “Molecularly imprinted polymer membranes for substance-selectivesolid-phase extraction from water by surface photo-grafting polymerization” Journal of Chromatography A, 907 pp. 89-99, 2002
    56. K. Hattori, M. Hiwatari, C. Iiyama, Y. Yoshimi, F. Kohori, K. Sakai and S. A. Piletsky “Gate effect of theophylline-imprinted polymers grafted to the cellulose by living radical polymerization” Journal of Membrane Science, 233, pp. 169-173, 2004
    57. N. Hilal and V. Kochkodan “Surface modified microfiltration membranes with molecularly recognising properties” Journal of Membrane Science, 213, pp. 97-113, 2003
    58. V. Kochkodan, W. Weigel and M. Ulbricht “Molecularly imprinted composite membranes for selective binding of desmetryn from aqueous solutions” Desalination, 149, pp. 323-328, 2002
    59. P. S. Reddy, T. Kobayashi, M. Abe and N. Fujii “Molecular imprinted Nylon-6 as a recognition material of amino acids” European Polymer Journal, 38, pp. 521-529, 2002
    60. T. A. Sergeyeva, S.A. Piletskya, A. A. Brovkob, E. A. Slinchenkoa, L. M. Sergeevab and A.V. El'skayaa “Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection” Analytica Chimica Acta, 392, pp. 105-111, 1999
    61. E. Schneiderman and A. M. Stalcup “Cyclodextrins: a versatile tool in separation science” Journal of Chromatography B, 745, pp. 83-102, 2002
    62. N. Blanchemain, S. Haulon, B. Martel, M. Traisnel, M. Morcellet and H. F. Hildebrand “Vascular PET prostheses surface modification with cyclodextrin coating: development of a new drug delivery system” European Journal of Vascular and Endovascular Surgery, 29, pp. 628-632, 2005
    63. C. Yue, J. Poffb, M. E. Cortiesb, R. D. Sinisterra, C. B. Faris. P. Hildgenb, R. Langerb and V. P. Shastrib “A novel polymeric chlorhexidine delivery device for the treatment of periodontal disease” Biomaterials, 25, pp. 3743-3750, 2004
    64. B. Evrarda, P. Bertholeta, M. Guedersc, M. P. Flamentb, G. P. L. Delattrea,A. Gayotb, P. Letermeb, J. M. Foidartc, D. Cataldo “Cyclodextrins as a potential carrier in drug nebulization” Journal of Controlled Release, 96, pp. 403- 410, 2004
    65. C. M. Fernandes, P. Ramos, A. C. Falcao and F. J. B. Veiga “H ydrophilic and hydrophobic cyclodextrins in a new sustained release oral formulation of nicardipine: in vitro evaluation and bioavailability studies in rabbits” Journal of Controlled Release, 88, pp. 127-134, 2003
    66. T. Loftsson and M. Masson “Cyclodextrins in topical drug formulations: theory and practice” International Journal of Pharmaceutics, 225, pp. 15-30, 2001
    67. T. Srichana, R. Suedee and W. Reanmongkol “Cyclodextrin as a potential drug carrier in salbutamol dry powder aerosols: the in-vitro deposition and toxicity studies of the complexes” Respiratory Medicene, 95, 513-519, 2001
    68. F. W. H. M. Merkus, J. C. Verhoef, E. Marttin, S. G. Romeijn, P. H. M. V. D. Kuy and W. A. J. J. Hermens and N. G. M. Schipper “Cyclodextrins in nasal drug delivery” Advanced Drug Delivery Reviews, 36, pp. 41-57, 1999
    69. F. Hirayama and K. Uekama “Cyclodextrin-based controlled drug release system” Advanced Drug Delivery Reviews, 36, pp. 125-141, 1999
    70. B. McCormack and G. Gregoriadis “Drugs-in-cyclodextrins -in-liposomes: an approach to controlling the fate of water insoluble drugs in vivo” International Journal of Pharmaceutics 162, pp. 59-69, 1998
    71. B. McCormack and G. Gregoriadis “Comparative studies of the fate of free and liposome-entrapped hydroxypropyl-/3-cyclodextrin/drug complexes after intravenous injection into rats: implications in drug delivery” Biochimica et Biophysica Acta, 1291, pp. 237-244, 1996
    72. G. Du, S. Zhang, J. Xie, B. Zhong and K. Liu “Chiral separation of anticholinergic drug enantiomers in nonaqueous capillary electrophoresis” Journal of Chromatography A, 1074, pp. 195-200, 2005
    73. E. Takahisa and K. H. Engel “2,3-Di-O-methoxymethyl-6-O-tert-butyl dimethylsilyl-g-cyclodextrin: a new class of cyclodextrin derivatives for gas chromatographic separation of enantiomers” Journal of Chromatography A, 1063, pp. 181-192, 2005
    74. X. Lin, C. Zhu, A. Hao “Evaluation of newly synthesized derivative of cyclodextrin for the capillary electrophoretic separation” Journal of Chromatography A, 1059, pp. 181-189, 2004
    75. A. Kavalirova, M. Pospisolova and R. Karlicek “Enantiomeric analysis of rivastigmine in pharmaceuticals by cyclodextrin-modified capillary zone electrophoresis” Analytica Chimica Acta, 525, pp. 43-51, 2004
    76. J. Paris, C. M. Jouve, D. Nuel, P. Moulin, F. Charbit “Enantioenrichment by pervaporation” Journal of Membrane Science, 237, pp. 9-14, 2004
    77. K. Pihlainen and R. Kostiainen “Effect of the eluent on enantiomer separation of controlled drugs by liquid chromatography – ultraviolet absorbance detection-electrosprayionisation tandem mass spectrometry using vancomycin and native b-cyclodextrin chiral stationary phases” Journal of Chromatography A, 1033, pp. 91-99, 2004
    78. P. Zakaria, M. Macka and P. R. Haddad “Selectivity control in the separation of aromatic amino acid enantiomers with sulphated b-cyclodextrin” Journal of Chromatography A, 1031, pp. 179–186, 2004
    79. T. V. Goel, J. G. Nikelly, R. C. Simpson and B. K. Matuszewski “Chiral separation of labetalol stereoisomers in human plasma by capillary electrophoresis” Journal of Chromatography A, 1027, pp. 213-221, 2004
    80. D. D. Schumacher, C. R. Mitchell, T. L. Xiao, R. V. Rozhkov, R. C. Larock and D. W. Armstrong “Cyclodextrin-based liquid chromatographic enantiomeric separation of chiral dihydro furocoumarins, an emerging class of medicinal compounds” Journal of Chromatography A, 1011, pp. 37-47, 2003
    81. T. Ruderisch , J. Pfeiffer and V. Schurig “Mixed chiral stationary phase containing modified resorcinarene and b-cyclodextrin selectors bonded to a polysiloxane for enantioselective gas chromatography” Journal of Chromatography A, 994, pp. 127-135, 2003
    82. H. Asanuma, M. Kakazu, M. Shibata, T. Hishiya and M. Komiyama “Synthesis of molecularly imprinted polymer of b-cyclodextrin for the efficient recognition of cholesterol” Supramolecular Science, 5, pp. 417-421, 1998
    83. T. Hishiya, M. Shibata, M. Kakazu, H. Asanuma, and M. Komiyama “Molecularly imprinted cyclodextrins as selective receptors for steroids” Macromolecules, 32, pp. 2265-2269, 1999
    84. S. A. Piletsky, H. S. Andersson and I. A. Nicholls “Combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers” Macromolecules, 32, pp. 633-636, 1999
    85. Q. Fu, H. Sanbe, C. Kagawa, K. K. Kunimoto and J. Haginaka “Uniformly sized molecularly imprinted polymer for (S)-Nilvadipine. Comparison of chiral recognition ability with HPLC chiral stationary phases based on a protein” Analytical Chemistry, 75, pp. 191-198, 2003
    86. C. Baggiani, L. Anfossi, C. Giovannoli and C. Tozzi “Multivariate analysis of the selectivity for a pentachlorophenol-imprinted polymer” Journal of Chromatography B, 804, pp. 31-41, 2004
    87. G. Theodoridis, G. Konsta and C. Bagia “Synthesis and evaluation of molecularly imprinted polymers for enalapril and lisinopril, two synthetic peptide anti-hypertensive drugs” Journal of Chromatography B, 804, pp. 43-51, 2004
    88. K. J. Shea and D. A. Loy “Bridged polysilsesquioxanes. Molecular -engineered hybrid organic-inorganic materials” Chemistry Materials 13, pp. 3306-3319, 2001
    89. C. Pinel, P. Loisil, P. Gallezot “Preparation and utilization of molecularly imprinted silicas” Advanced Materials, 9, pp. 582-585, 1997
    90. T. Katz and M. E. Davis “Molecular imprinting of bulk, microporous silica” Nature, 403, pp. 286-289, 2000
    91. F. L. Dickert and O. Hayden “Bioimprinting of polymers and sol-gel phases selective detection of yeasts with imprinted polymers” Analytical Chemistry, 74, pp. 1302-1306, 2002
    92. S. Huana, H. Chua, C. Jiao, G. Zeng, G. Huang, G. Shen, R. Yu “Selective electrochemical molecular recognition of benzenediol isomers using molecularly imprinted TiO2 film electrodes” Analytica Chimica Acta, 506, pp. 31-39, 2004
    93. M. Wyss and R. Daouk “Creatine and creatinine metabolism” Physiological Reviews, 80, pp. 1108-1213, 2000
    94. K. G. Blass “Reactivity of creatinine with alkaline 3,5-dinitrobenzoate: A new fluorescent kidney function test” Clinical Biochemistry, 28, pp. 107-111, 1995
    95. T. Osaka, S. Komaba, A. Amano, Y. Fujino and H. Mori “Electrochemical molecular sieving of the polyion complex film for designing highly sensitive biosensor for creatinine” Sensors and Actuators B, 65, pp. 58-63, 2000
    96. G. F. Khana and W. Wernet “A highly sensitive amperometric creatinine sensor” Analytica Chimica Acta, 351, pp. 151-158, 1997
    97. Y. D. Ying “Simultaneous determination of creatine, uric acid, creatinine and hippuric acid in urine by high performance liquid chromatography” Biomedical Chromatography, 12, pp. 47-49, 1998
    98. K. Sreenivasan and R. Sivakumar “Interaction of molecularly imprinted polymers with creatinine” Journal of Applied Polymer Science, 66 , pp. 2539-2542, 1997
    99. T. P. Delaney, V. M. Mirsky and O. S. Wolfbeis “Capacitive creatinine sensor based on a photografted molecularly imprinted polymer” Electroanalysis, 14, pp. 221-224, 2002
    100. S. Subrahmanyam , S. A. Piletsky, E. V. Piletska, B. Chen, K. Karim and A. P. F. Turner “Bite-and-Switch’ approach using computationally designed molecularly imprinted polymers for sensing of creatinine” Biosensors and Bioelectronics, 16, pp. 631-637, 2001
    101. M. Subat, A.S. Borovik, and B. Konig, “Synthetic creatinine receptor: imprinting of a lewis acidic zinc(II)cyclen binding site to shape its molecular recognition Selectivity” Journal of American Chemistry Society, 126, pp. 3185-3190, 2004
    102. G. Crinia, C. Cosentino, S. Bertini, A. Naggia, G. Torri, C. Vecchi, L. Janus and M. Morcellet “Solid state NMR spectroscopy study of molecular motion in cyclomaltoheptaose (b-cyclodextrin) crosslinked with epichlorohydrin” Carbohydrate Research, 308, pp. 37-45, 1998
    103. Hsuan-Ang Tsai, Mei-Jywan Syu “Synthesis of creatinine-imprinted poly(b-cyclodextrin) for the specific binding of creatinine” Biomaterials, 26, pp. 2759-2766, 2005
    104. Hsuan-Ang Tsai, Mei-Jywan Syu “Synthesis and characterization of creatinine imprinted poly(4-vinylpyridine-co-divinylbenzene) as a specific recognition receptor” Analytica Chimica Acta, pp. 107-116, 2005

    下載圖示 校內:2007-06-29公開
    校外:2007-06-29公開
    QR CODE