| 研究生: |
張立德 Chang, Li-Der |
|---|---|
| 論文名稱: |
探討退黑激素對於永久性中風後小鼠之血腦屏障的影響 Effect of melatonin on the integrity of blood brain barrier in permanent stroke model in mice |
| 指導教授: |
司君一
Sze, Chun-I 陳淑姿 Chen, Shur-Tzu 李宜堅 Lee, E-Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 細胞生物與解剖學研究所 Institute of Cell Biology and Anatomy |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 退黑激素 、血腦屏障 、水通道蛋白第四型 、中風 |
| 外文關鍵詞: | melatonin, stroke, blood-brain barrier (BBB), aquaporin-4 (AQP-4) |
| 相關次數: | 點閱:109 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
缺血性腦中風導致腦部傷害且破壞腦神經血管構造因而造成腦部水腫產生。
過去研究發現褪黑激素是一種強而有效之自然抗氧化劑與自由基截取劑。近年來有許多研究指出褪黑激素於急性缺血性腦中風有強而有效的神經保護作用。在本研究中,利用ICR小白鼠進行持續性中大腦動脈電燒結紮手術模擬中風,並以褪黑激素治療,評估其神經保護特性與其血腦屏障功能。實驗中,老鼠在模擬完中風後給予5 mg/kg的褪黑激素治療。老鼠存活24小時之後,應用影像軟體處理系統計算Nissl染色腦切片之栓塞大小並評估栓塞後個別神經運動感覺功能,腦血流以及使用1% 伊凡斯藍(Evans blue)的染劑注入老鼠體內來觀察血腦屏障功能。除此之外,利用西方點漬法觀察基質金屬蛋白酶第九型(MMP-9)、水通道蛋白第四型(Aquaporin-4)以及緊密聯合(Tight -junction)蛋白的表現量。實驗結果表示,在中大腦動脈栓塞24小時老鼠給予每公斤五毫克的褪黑激素治療後與PEG-saline實驗控制組比較,腦梗塞和水腫的體積有些微下降。而藉由伊凡斯藍的染劑之結果觀察,發現到褪黑激素治療組老鼠的血腦屏障的完整性比PEG-saline控制組來的好,顯示出褪黑激素加強了血腦屏障的功能。在蛋白質的表現中也看到了在褪黑激素治療後,基質金屬蛋白酶第九型的表達量有下降趨勢;而和緊密聯合有關的蛋白在受傷後的確比正常情況低,但給予治療的老鼠表達量較高的完整性。相反地,水通道蛋白第四型有較低的表達量,顯示出褪黑激素似乎有細胞型水腫發生的情形。本研究證實褪黑激素是對於腦部損傷後有著保護作用,其機制為保護血腦屏障之完整性藉而達到降低血管型腦水腫發生的情形。
Cerebral ischemia stroke can cause damage to the neurovascular unit and formation of brain edema. Melatonin (N-aceyl-5-methoxytryptamine) is a well-known, potent free radical scavenger and an antioxidant. Therefore, a series of experiments with delayed treatment of melatonin have been employed to examine whether exogenous melatonin offers neuroprotective action against middle cerebral artery occlusion (MCAo). In this study, adult male ICR mice were subjected to MCA ligation. Melatonin (5 mg/kg) or vehicle were given before MCA ligation. Brains were sectioned and stained using Nissl stain. Then, software was used to calculate infarction size, brain edema and cell count. 1% Evans Blue was injected after MCA ligation to observe the integrity of blood- brain barrier (BBB). We used neurobehavioral outcome measures to evaluate the ability of motor and sense. The protein expression of aquaporin-4 (AQP-4), Matrix metalloproteinases-9 (MMP-9) and Tight junction protein were determined by Western blotting at 24 hours of ligation. Treatment with melatonin reduced the infarction size and brain swelling after middle cerebral artery ligation. Our results indicate that the administration of melatonin reduced the size of cortical and infarction and brain edema after ischemia. Treatment with melatonin can protect the compromised structure of BBB after MCAO. The decrease of expression of aquaporin-4 may be associated with brain edema after treatment with melatonin. Our studies suggest that melatonin-treated animals not only have reduced brain damage but also decreased brain vasogenic edema after ischemia.
1. 衛生統計資訊網(民98)‧97 年國人十大死因‧行政院衛生署統計室。
2. Zauner A, Daugherty WP, Ross M, Warner DS. Brain oxygenation and energy metabolism: partI-biological function and pathophysiology. Neurosurgery Review 2002; 51:289-302
3.張承能(民93)‧中風病患的治療與復健‧臺北:行政院衛生署國民健康局。
4.蔡宜殷(民92)‧以Melatonin治療暫時性局部腦缺血白鼠有助其電生理及神經行為之改善‧國立成功大學醫學工程研究所碩士論文。
5.吳進安 (民85)‧基礎神經學‧臺北:合記。
6. Fujimura M, Gasche Y, Morita-Fujimura Y, Massengale J, Kawase M, Chan PH. Early Appearance of Activated Matrix Metalloproteinase-9 After Focal Cerebral Ischemia in Mice: A Possible Role in Blood-Brain Barrier Dysfunction. Brain Res. 1999; 842(1):92-100.
7. J.F. and Nagase Woessner Matrix metalloproteinases. J Biol Chem 1999; 274(31): 21491-21494
8. Amy R. Nelson, Barbara Fingleton, Mace L. Rothenberg Matrix Metalloproteinases: Biologic Activity and Clinical Implications. Curr Med Chem. 2009; 16(10):1214-28. Review.
9. Anna Rosell and Eng H Lo Multiphasic roles for matrix metalloproteinases after stroke. Current Opinion in Pharmacology 2008; 8:82–89
10. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA.
Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 2007; 27: 697-709
11. 林則彬 (民93)‧人體生理學 由細胞銜接系統導讀‧臺北:合記。
12. Mahmood Amiry-Moghaddam and Ole P. Ottersen The Molecular basis of water transport in the brain Nat Rev Neurosci. 2003; 4(12):991-1001
13. Zsolt Zador, Orin Bloch, Xiaoming Yao and Geoffrey T. Manley Aquaporins: role in cerebral edema and brain water balance Prog Brain Res. 2007;161:185-94.
14. Geofferey T. ManLEY1 MIKI FUJIMURAAquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke
15. Marios C. Papadopoulos, Geoffrey T. Manley, Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema FASEB J. 2004 18(11):1291-3
16. Quoted from http://en.wikipedia.org/wiki/Melatonin#_note-Caniato2003
17. Quoted from http://www.vghks.gov.tw/meta/melatoni.htm
18. Arlene Goldman. Melatonin: A Review. British Journal of Clinical Pharmacology 1995; 19:258-260
19. Boutin J, Audinot V, Ferry G, Delagrange P. Molecular tools to study melatonin pathways and actions. Trends Pharmacol. Sci. 2005; 26(8):412-9.
20. Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 2005; 27(2):119-30.
21. Tan D, Manchester L, Reiter R, Qi W, Karbownik M, Calvo J. Significance of melatonin in anti oxidative defense system: reactions and products. Biol. Signals Recept. 2000; 9(3-4):137-59.
22. Karbownik M, Reiter R, Cabrera J, Garcia J. Comparison of the protective effect of melatonin with other antioxidants in the hamster kidney model of estradiol-induced DNA damage. Mutat. Res. 2001; 474(1-2):87-92.
23. Carrillo-Vico A, Guerrero J, Lardone P, Reiter R. A review of the multiple actions of melatonin on the immune system. Endocrine 2005; 27(2):189-200.
24. Lewis Alan. Melatonin and the Biological Clock. McGraw-Hill 1999; 23
25. Sessa B. Can psychedelics have a role in psychiatry once again? The British Journal of Psychiatry 2005; 457-458
26. Sessa B. Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine. Med. Hypotheses 2005; 5 (64): 930-7.
27. Bellipanni G, DI Marzo F, Blasi F, Di Marzo A. Effects of melatonin in perimenopausal and menopausal women: our personal experience. Ann. N. Y. Acad. Sci. 2005; 1057: 393-402.
28. Lee EJ, Lee MY, Chang GL, Chen LH, Hu YL, Chen TY, Wu TS. Delayed treatment with magnesium reduces brain infarction and improves electrophysiological recovery following transient focal cerebral ischemia in rats. J. Neurosurg. 2005; 102:1085-93
29. Maestroni G. Therapeutic potential of melatonin in immunodeficiency states, viral diseases, and cancer. Adv. Exp. Med. Biol. 1999; 467: 217-26
30. Ravindra T, Lakshmi NK, Ahuja YR. Melatonin in pathogenesis and therapy of
cancer.Indian. J. Med. Sci. 2006; 60:523-35.
31. Lee EJ, Chen HY, Wu TS, Chen TY, Ayoub IA, Maynard KI. Acute administration of Ginkgo biloba extract(EGb 761)affords neuroprotection against permanent and transient focal cerebral ischemia in Sprague-Dawley rats. J. Neurosci. Res. 2002; 68:636-645
32. Lee EJ, Wu TS, Lee MY, Chen TY, Tsai YY, Chuang JI, Chang GL. Delayed treatment with melatonin enhances electrophysiological recovery following transient focal cerebral ischemia in rats. J. Pineal Res. 2004; 36:33-42.
33. Lee EJ, Ayoub IA, Harris FB, Hassan M, Ogilvy CS, Maynard KI. Mexiletine and magnesium independently, but not combined, protect against permanent focal cerebral ischemia in Wistar rats. J. Neurosci. Res. 1999; 58:442-448
34. Lee EJ, Lee MY, Chen HY, Hsu YS, Wu TS, Chen ST, Chang G.L. Melatonin attenuates gray and white matter damage in a mouse model of transient focal cerebral ischemia. J. Pineal Res. 2005; 38:42-52
35. Skaper SD, Floreani M, Ceccon M, et al. Excitotoxicity, oxidative stress, and the
neuroprotective potential of melatonin. Ann. N. Y. Acad. Sci. 1999; 890:107-118
36. Cheung RT. The utility of melatonin in reducing cerebral damage resulting from ischemia and reperfusion. J. Pineal Res. 2003; 34:153-160.
37. Tan DX, Chen LD, Poeggeler B, et al. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr. J. 1993; 1:57-60
38. Reiter RJ, Tan DX, Manchester LC, et al. Biochemical reactivity of melatonin with reactive oxygen and nitrogen species: a review of the evidence. Cell Biochem. Biophys. 2001; 34:237-256
39. Tan DX, Reiter RJ, Manchester LC, et al. Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top Med. Chem. 2002; 2:181-197
40. Onuki J, Almeida EA, Medeiros MH, et al. Inhibition of 5-aminolevulinic acid-induced DNA damage bymelatonin, N1-acetyl-N2-formyl-5methoxykynuramine, quercetin or resveratrol. J. Pineal Res. 2005; 38:107-115
41. Guenther AL, Schmidt SI, Laatsch H, et al. Reactions of the melatonin metabolite AMK (N1-acetyl-5-methoxykynuramine) with reactive nitrogen species: formation of novel compounds, 3-acetamidomethyl-6-methoxycinnolinone and 3-nitro-AMK. J. Pineal Res. 2005; 39:251-260
42. Rosen J, Than NN, Koch D, et al. Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J. Pineal Res. 2006; 41:374-381
43. Belayev L, Alonso OF, Busto R, Zhao, Ginsberg MD. Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 1996; 27:1616-1623.
44. Clark WM, Rinker LG, Lessov NS, Hazel K, Hill JK, Stenzel-Poore M, Eckenstein F. Lack of interleukin-6 expression is not protective against focal central nervous system ischemia. Stroke 2000; 31(7):1715-1720.
45. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. The Journal of Neuroscience 2001; 21:7724–7732
46.Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, Day AL, Kristal BS, Friedlander RM. Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke 2009; 40(5):1877-85
47. Kaur C, Sivakumar V, Zhang Y, Ling EA. Hypoxia-Induced Astrocytic Reaction and Increased Vascular Permeability in the Rat Cerebellum GLIA 2006; 54:826–839
48. Kaur C, Sivakumar V, Yong Z, Lu J, Foulds WS, Ling EA. Blood–retinal barrier disruption and ultrastructural changes in the hypoxic retina in adult rats: the beneficial effect of melatonin administration. J. Pathol 2007; 212:429–439