簡易檢索 / 詳目顯示

研究生: 陳泊宇
Chen, Po-Yu
論文名稱: 不同形狀Helmholtz resonator之聲音特性
The Acoustic Characteristics of Helmholtz Resonators with Different Shapes
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 124
中文關鍵詞: Helmholtz共振腔噴流驅動聲音特性
外文關鍵詞: Helmholtz resonators, Jet-excited, Acoustic characteristic
相關次數: 點閱:108下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以實驗方法探討噴流驅動的Helmholtz共振腔,其幾何外形的不同對聲音特性的影響。以圓柱狀厚紙筒及pvc塑膠管,製作出不同形狀的Helmholtz共振腔。實驗內容為觀察圓柱狀Helmholtz共振腔幾個基本形狀參數對聲音特性的影響,包含頸長、高度、口徑、開孔面積、開孔形狀及開孔位置。觀察一些比較特殊外形的Helmholtz共振腔,包含彎圓柱、內外圓柱的組合(套管)、窄口瓶對聲音特性的影響。
    實驗結果顯示,除了開孔形狀、開孔面積因振動模態的轉換有所不同外,其他基本參數的變化趨勢大致符合理論公式的趨勢。內外圓柱的組合(套管)可驅動的頻率範圍,會小於等體積的圓柱,且在內圓柱體積占外圓柱的小於50%時,頻率不會高於等體積的圓柱,還有可能變低。彎圓柱在彎曲夾角較大時(135度),頻率會略低於直圓柱;角度較小時(90度),頻率會略高於直圓柱,但差異約在10%以下。兩端口徑不同的圓柱(窄口瓶),窄寬比<0.5時,頻率會低於等高度但體積較大的圓柱。

    Using experimental methods to analyze the acoustic effects of jet-excited Helmholtz resonators with different shapes.Making different resonators by paper tubes and pvc plastic tubes.
    The experimental content is to observe the acoustic characteristics of several basic parameters of Helmholtz resonators,which includes length of neck,height of cylinder,diameter of cylinder,area of aperture,shape of aperture,position of aperture. Observing the acoustic characteristics of some Helmholtz resonators of special shapes,which includes the curved cylinder,the combination of inner and outer cylinder, the narrow-mouth bottle.
    The results show that all basic parameters of Helmholtz resonators are roughly conformed with theorical equations except the shape of aperture and the area of aperture,which can cause some deviations because of the change of vibration mode. For the combinations of inner and outer cylinder, when the inner cylindr occupies volume smaller than 50% of outer cylinder, the frequency will decrease. For the curved cylinders, the frequency of the curved cylinders with sharper angle(90°) will decrease compared with the straight cylinders,and the curved cylinders with easer angle(135°) will increase compared with the straight cylinders. But the change of the frequency of the curved cylinders are within 10%. For the narrow-mouth bottle, when the ratio of narrower diameter to wider diameter is smaller than 0.5, the frequency will decrease compared with the cylinders with the same height and bigger volume.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 X 符號說明 XIV 1 第一章 緒論 1 1-1 前言與研究動機 1 1-2 Helmholtz共振腔介紹 2 1-3 Helmholtz共振腔基本理論介紹 3 1-4 文獻回顧 5 2 第二章 實驗流程及設備 13 2-1 實驗流程 13 2-2 實驗設備 14 2-2-1 鼓風機與吹嘴 15 2-2-2 各式圓筒 16 2-2-3 麥克風 17 2-2-4 電源供應器 17 2-2-5 風速計 18 3 第三章 實驗方法 20 3-1 驅動條件與特徵頻率 20 3-2 理論公式 23 3-3 圓柱狀Helmholtz共振腔實驗模組 23 3-3-1 頸長參數 23 3-3-2 高度參數 24 3-3-3 口徑參數 25 3-3-4 開孔大小 26 3-3-5 開孔形狀 26 3-3-6 開孔位置 28 3-4 套管狀Helmholtz共振腔實驗模組 30 3-5 各式彎管Helmholtz共振腔實驗模組 35 3-5-1 135度 36 3-5-2 90度 39 3-6 窄口瓶狀Helmholtz共振腔實驗模組 42 4 第四章 結果與討論 50 4-1 圓柱狀Helmholtz共振腔 50 4-1-1 頸長對圓柱狀Helmholtz共振腔之影響 50 4-1-2 高度對圓柱狀Helmholtz共振腔之影響 51 4-1-3 口徑對圓柱狀Helmholtz共振腔之影響 53 4-1-4 開孔大小對圓柱狀Helmholtz共振腔之影響 55 4-1-5 開孔形狀對圓柱狀Helmholtz共振腔之影響 57 4-1-6 開孔位置對圓柱狀Helmholtz共振腔之影響 60 4-1-7 圓柱狀Helmholtz共振腔實驗小結 61 4-2 套管狀Helmholtz共振腔 61 4-2-1 A型套管與A型圓柱 62 4-2-2 B型套管與B型圓柱 65 4-2-3 套管狀Helmholtz共振腔實驗小結 68 4-3 各式彎管Helmholtz共振腔 69 4-3-1 135度彎管 69 4-3-2 90度彎管 72 4-3-3 各式彎管Helmholtz共振腔實驗小結 74 4-4 窄口瓶狀Helmholtz共振腔 74 5 第五章 結論和建議 79 5-1 結論 79 5-2 未來建議 81 6 參考文獻 82 7 附錄 85 附錄一、圓柱狀Helmholtz共振腔隨頸長變化之實驗數據頻譜圖 85 附錄二、圓柱狀Helmholtz共振腔隨高度變化之實驗數據頻譜圖 87 附錄三、圓柱狀Helmholtz共振腔隨口徑變化之實驗數據頻譜圖 89 附錄四、圓柱狀Helmholtz共振腔隨開孔大小變化之實驗數據頻譜圖 91 附錄五、圓柱狀Helmholtz共振腔隨開孔形狀變化之實驗數據頻譜圖 93 附錄六、圓柱狀Helmholtz共振腔隨開孔位置變化之實驗數據頻譜圖 96 附錄七、A型套管實驗數據頻譜圖 98 附錄八、A型圓柱實驗數據頻譜圖 100 附錄九、B型套管實驗數據頻譜圖 102 附錄十、B型圓柱實驗數據頻譜圖 103 附錄十一、135度彎管實驗數據頻譜圖 104 附錄十二、90度彎管實驗數據頻譜圖 108 附錄十三、窄口瓶實驗數據頻譜圖 112 附錄十四、文獻回顧整理 115

    [1] P. K. Tang and W. A. Sirignano, "Theory of a generalized Helmholtz resonator," Journal of Sound and Vibration, vol. 26, pp. 247-262, 1973.
    [2] http://www.phys.unsw.edu.au/jw/Helmholtz.html, July 2012
    [3] R. L. Panton and J. M. Miller, "Resonant frequencies of cylindrical Helmholtz resonators," Journal of the Acoustical Society of America, vol. 57, pp. 1533-1535, 1975.
    [4] R. C. Chanaud, "Effects of geometry on the resonance frequency of Helmholtz resonators," Journal of Sound and Vibration, vol. 178, pp. 337-348, 1994.
    [5] U. Ingard, "On the theory and design of acoustic resonator," Journal of the Acoustical Society of America, vol. 25, pp. 1037-1061, 1953.
    [6] A. K. Nielsen, "Acoustical resonators of circular cross section and with axial symmetry," Transactions of the Danish Academy of Technical Science vol. 10, pp. 9-70, 1949.
    [7] M. Alster, "Improved calculation of resonant frequencies of Helmholtz resonators," Journal of Sound and Vibration, vol. 24, pp. 63-85, 1972.
    [8] A. N. Norris and G. Wickham, "Elastic Helmholtz resonators," Journal of the Acoustical Society of America, vol. 93, pp. 617-630, 1993.
    [9] R. C. Chanaud, "Effects of geometry on the resonance frequency of Helmholtz resonators, part II," Journal of Sound and Vibration, vol. 204, pp. 829-834, 1997.
    [10] A. Selamet, N. S. Dickey, and J. M. Novak, "Theoretical, computational and experimental investigation of Helmholtz resonators with fixed volume: lumped versus distributed analysis," Journal of Sound and Vibration, vol. 187, pp. 358-367, 1995.
    [11] N. S. Dickey and A. Selamet, "Helmholtz resonators:one-dimensional limit for small cavity length-to-diameter ratios," Journal of Sound and Vibration, vol. 195, pp. 512-517, 1996.
    [12] A. Selamet, P. M. Radavich, N. S. Dickey, and J. M. Novak, "Circular concentric Helmholtz resonators," Journal of the Acoustical Society of America, vol. 101, pp. 41-51, 1997.
    [13] K. T. Chen, Y. H. Chen, K. Y. Lin, and C. C. Weng, "The improvement on the transmission loss of a duct by adding Helmholtz resonators," Applied Acoustics, vol. 54, pp. 71-82, 1998.
    [14] G. P. Wilson and W. W. Soroka, "Approximation to the diffraction of sound by a circular aperture in a rigid wall of finite thickness," vol. 37, pp. 286-297, 1965.
    [15] A. Doria, "A simple method for the analysis of deep cavity and long neck acoustic resonators," Journal of Sound and Vibration, vol. 232, pp. 823-833, 2000.
    [16] S. Griffin, S. A. Lane, and S. Huybrechts, "Coupled Helmholtz Resonators for Acoustic Attenuation," Journal of Vibration and Acoustics, vol. 123, p. 11, 2001.
    [17] A. Selamet and I. Lee, "Helmholtz resonator with extended neck," The Journal of the Acoustical Society of America, vol. 113, p. 1975, 2003.
    [18] Z. L. Ji, "Acoustic length correction of closed cylindrical side-branched tube," Journal of Sound and Vibration, vol. 283, pp. 1180-1186, 2005.
    [19] S. K. Tang, "On Helmholtz resonators with tapered necks," Journal of Sound and Vibration, vol. 279, pp. 1085-1096, 2005.
    [20] S. Kim, Y.-H. Kim, and J.-H. Jang, "A theoretical model to predict the low-frequency sound absorption of a Helmholtz resonator array," The Journal of the Acoustical Society of America, vol. 119, p. 1933-1936, 2006.
    [21] A. Selamet, H. Kim, and N. T. Huff, "Leakage effect in Helmholtz resonators," J Acoust Soc Am, vol. 126, pp. 1142-1150, Sep 2009.
    [22] M. B. Xu, A. Selamet, and H. Kim, "Dual Helmholtz resonator," Applied Acoustics, vol. 71, pp. 822-829, 2010.
    [23] S. C. Hoon and P. J. Hyun, "A comparative study on acoustic damping induced by half-wave, quarter-wave, and Helmholtz resonators," Aerospace Science and Technology, vol. 15, pp. 606-614, 2011.
    [24] M. Meissner, "Aerodynamically excited acoustic oscillations in cavity resonator exposed to an air jet," Acta Acustica United with Acustica, vol. 88, pp. 170-180, 2002.
    [25] R. Ma, P. E. Slaboch, and S. C. Morris, "Fluid mechanics of the flow-excited Helmholtz resonator," Journal of Fluid Mechanics, vol. 623, p. 1-26, 2009.
    [26] E. Selamet, A. Selamet, A. Iqbal, and H. Kim, "Effect of flow on Helmholtz resonator acoustics: a three-dimensional computational study vs.experiments," SAE Technical Paper 2011-01-1521, 2011.

    下載圖示 校內:2014-08-24公開
    校外:2014-08-24公開
    QR CODE