簡易檢索 / 詳目顯示

研究生: 謝恩平
Hsieh, En-Ping
論文名稱: 應用八元樹法於銑削力預估之五軸虛擬工具機系統
An Octree Method for Milling Force Prediction in Five-Axis Virtual Machine Tool
指導教授: 李榮顯
Lee, Rong-Shean
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 127
中文關鍵詞: 八元樹五軸銑削力預估虛擬工具機
外文關鍵詞: Octree, Five-Axis, Milling Force Predicition, Virtual Machine Tool
相關次數: 點閱:95下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在航太、生醫、模具等產業常使用五軸工具機來進行產品開發,由於五軸工具機能提供較大的彈性與變化,並大幅減少加工時間與提升產品精度,是目前工具機產業發展之趨勢。但五軸加工時,工程師為確保加工過程順利,必須反覆測試程式並採用相對保守的加工條件,其目的是為避免撞機或刀具所負荷之銑削力過大導致刀具斷裂等危險,因此本文提出一套預估五軸銑削力之虛擬工具機系統,做為工程師事先檢查加工情況並評估加工參數是否合乎要求的解決方案。
    銑削力方面,本文提出結合應用八元樹法之虛擬切削與五軸銑削力模型之演算法,此方法可適用於一般化刀具幾何與五軸運動,隨加工路徑模擬刀具與材料之干涉幾何,並預估其五軸加工之瞬時靜態銑削力。
    為模擬實際加工過程,本文提出虛擬工具機系統之架構,並實作出虛擬機台與控制器,虛擬工具機不但具備基本控制器之功能與正確模擬運動之情形外,還可藉由套用符合介面之真實或虛擬控制器比較其差異。
    最後,本文以文獻驗證本研究所產生之模擬結果,並證實本文提出之銑削力預估演算法可正確模擬五軸工具機之各種運動形式之瞬時靜態銑削力,具有實際應用之價值。在虛擬工具機系統方面,本文以實際程式比較真實控制器與虛擬控制器之差異,並顯示在虛擬控制器能夠準確模擬運動之情形。

    Generally, products for aerospace or mold industries need superior precision. Since the manufacturing processes are difficult and time-consuming in traditional 3-axis machine tool. To improve the accuracy and productivity of the products, the five-axis machine tools are introduced to the manufacturing industries. In five-axis machining, engineers set the operation parameter more cautious to decrease the possibility of tool breakage caused by peak force, which is ineffective and time-consuming. To solve the aforementioned problems, a system to simulate the milling process and to predict milling force is proposed. The contribution of the thesis includes an algorithm connecting between geometric simulation and instantaneous static milling force model in five-axis machining process and a system to monitor the milling force in the five-axis virtual machine tool.
    An algorithm combining octree method of geometry simulation with general milling cutter and five-axis semi-discrete milling force model is developed. It presents the cutter-workpiece engagement geometry along tool paths and predicts the milling force at the same time. Moreover, a five-axis virtual machine tool simulation system is developed. It provides basic functions of commercial controllers and presents five-axis motion animation. Furthermore, it presents the comparison with the tool paths via virtual controller and commercial controller.
    Finally, the algorithm of milling force prediction is verified by previous literature, and it proved that the result of this thesis is reasonable; and the virtual five-axis machine tool system simulates the entire operation appropriately. As a consequence, the prediction of milling force in five-axis virtual machine tool system is reliable and valuable.

    摘要 .................................................................................................................... I Abstract............................................................................................................. II 誌謝 ................................................................................................................. III 目錄 ................................................................................................................. IV 表目錄 ........................................................................................................... VII 圖目錄 ............................................................................................................. IX 符號說明 ...................................................................................................... XIII 第一章 緒論 .............................................................................................. 1 1-1 前言 .................................................................................................... 1 1-2 文獻回顧 ............................................................................................ 3 1-2-1 五軸工具機 ............................................................................ 4 1-2-2 幾何切削模擬 ........................................................................ 5 1-2-3 銑削力模式 .......................................................................... 13 1-2-4 文獻分析 .............................................................................. 15 1-3 研究目的與範疇 .............................................................................. 19 第二章 基礎理論 .................................................................................... 20 2-1 齊次轉換矩陣 .................................................................................. 20 2-2 適應性八元樹切削模擬演算法 ..................................................... 25 2-3 插補演算法 ...................................................................................... 27 2-3-1 線性軸插補 .......................................................................... 29 2-3-2 旋轉軸插補 .......................................................................... 32 2-4 一般化端銑刀 .................................................................................. 35 2-5 三軸銑削力模式 .............................................................................. 40 2-5-1 刀具座標系與定義 .............................................................. 40 2-5-2 水平進給之三軸銑削力模型 .............................................. 42 2-5-3 斜向進給之三軸銑削力模型 .............................................. 45 2-6 五軸銑削力模式 .............................................................................. 47 2-6-1 直線運動 .............................................................................. 47 2-6-2 旋轉運動 .............................................................................. 49 2-6-3 進給偏轉效應 ...................................................................... 50 2-6-4 斜向進給之五軸銑削力模型 .............................................. 51 2-6-5 五軸銑削力計算流程 .......................................................... 53 第三章 系統核心理論 ............................................................................ 54 3-1 概述 .................................................................................................. 54 3-2 前處理 .............................................................................................. 57 3-3 建立切削範圍表格 .......................................................................... 63 3-4 計算銑削力 ...................................................................................... 67 第四章 虛擬工具機系統架構 ................................................................ 71 4-1 虛擬機台 .......................................................................................... 73 4-2 虛擬控制器 ...................................................................................... 78 4-2-1 外部介面 .............................................................................. 79 4-2-2 基礎架構 .............................................................................. 81 4-3 虛擬工具機銑削力模擬流程 ......................................................... 84 4-3-1 MDI模式 ............................................................................... 84 4-3-2 檔案執行模式 ...................................................................... 85 第五章 結果與討論 ................................................................................ 86 5-1 虛擬工具機之路徑驗證 ................................................................. 86 5-1-1 循圓測試 .............................................................................. 87 5-1-2 鞋模加工 .............................................................................. 88 5-2 銑削力預估之文獻驗證 ................................................................. 93 5-2-1 三軸銑削力驗證 .................................................................. 93 5-2-2 五軸刀具傾擺銑削力驗證 ................................................ 106 5-2-3 五軸同動銑削力驗證 ........................................................ 113 5-3 討論 ................................................................................................ 117 第六章 結論與建議 .............................................................................. 119 6-1 結論 ................................................................................................ 119 6-2 建議 ................................................................................................ 121 參考文獻 ....................................................................................................... 122

    Abrari, F., Elbestawi, M. A., & Spence, A. D., "On the dynamics of ball end milling: Modeling of cutting forces and stability analysis", International Journal of Machine Tools and Manufacture, Vol. 38, No. 3, pp. 215-237, 1998.
    Altintas, Y., Brecher, C., Weck, M., & Witt, S., "Virtual Machine Tool", CIRP Annals - Manufacturing Technology, Vol. 54, No. 2, pp. 115-138, 2005.
    Altintas, Y., & Engin, S., "Generalized Modeling of Mechanics and Dynamics of Milling Cutters", CIRP Annals - Manufacturing Technology, Vol. 50, No. 1, pp. 25-30, 2001.
    Altintaş, Y., & Lee, P., "A eneral mechanics and dynamics m del for helical end mills", CIRP Annals - Manufacturing Technology, Vol. 45, No. 1, pp. 59-64, 1996.
    Altintas, Y., & Yellowley, I., "The identification of radial width and axial depth of cut in peripheral milling", International Journal of Machine Tools and Manufacture, Vol. 27, No. 3, pp. 367-381, 1987.
    Anderson, R. O., "Detecting and eliminating collisions in NC machining", Computer-Aided Design, Vol. 10, No. 4, pp. 231-237, 1978.
    Aras, E., & Yip-Hoi, D., "Geometric modeling of cutterlworkpiece engagements in three-Axis milling using polyhedral representations", Journal of Computing and Information Science in Engineering, Vol. 8, No. 3, pp. 031007.1-031007.13, 2008.
    Atherton, P., Earl, C., & Fred, C. A graphical simulation system for dynamic five-axis NC verification. In:SME's Autofact Conference, Dearborn, MI, 2.1-2.12, 1987.
    Bailey, T., Elbestawi, M. A., El-Wardany, T. I., & Fitzpatrick, P., "Generic simulation approach for multi-axis machining, Part 1: Modeling methodology", Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 124, No. 3, pp. 624-633, 2002a.
    Bailey, T., Elbestawi, M. A., El-Wardany, T. I., & Fitzpatrick, P., "Generic simulation approach for multi-axis machining, Part 2: Model calibration and feed rate scheduling", Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 124, No. 3, pp. 634-642, 2002b.
    Banerjee, P., & Zetu, D. Virtual Manufacturing John Wiley & Sons Inc., New York, 2001.
    Blasquez, I., & Poiraudeau, J. F., "Undo facilities for the extended z-buffer in NC machining simulation", Computers in Industry, Vol. 53, No. 2, pp. 193-204, 2004.
    Brunet, P., & Navazo, I., "Solid representation and operation using extended octrees", ACM Transactions on Graphics, Vol. 9, No. 2, pp. 170-197, 1990.
    dak, ., Altintaş, Y., & Armare , . . A., "Predicti n illin rce Coefficients From Orthogonal Cutting Data", Journal of Manufacturing Science and Engineering, Vol. 118, No. 2, pp. 216-224, 1996.
    El-Mounayri, H. A., Elbestawi, M. A., Spence, A. D., & Bedif, S., "General geometric modelling approach for machining process simulation", International Journal of Advanced Manufacturing Technology, Vol. 13, No. 4, pp. 237-247, 1997.
    El-Mounayri, H., Kishawy, H., & Tandon, V., "Optimized CNC end-milling: A practical approach", International Journal of Computer Integrated Manufacturing, Vol. 15, No. 5, pp. 453-470, 2002.
    El-Mounayri, H., Spence, A. D., & Elbestawi, M. A., "Milling process simulation - A generic solid modeller based paradigm", Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 120, No. 2, pp. 213-221, 1998.
    Engin, S., & Altintas, Y., "Mechanics and dynamics of general milling cutters", International Journal of Machine Tools and Manufacture, Vol. 41, No. 15, pp. 2195-2212, 2001.
    Ferry, W. B., "Virtual five-axis flank milling of jet engine impellers", Ph.D. Thesis, The University of British Columbia, 2008.
    Ferry, W. B., & Altintas, Y., "Virtual Five-Axis Flank Milling of Jet Engine Impellers—Part I: Mechanics of Five-Axis Flank Milling", Journal of Manufacturing Science and Engineering, Vol. 130, No. 1, pp. 011005.1-011005.11, 2008.
    Ferry, W., & Yip-Hoi, D., "Cutter-workpiece engagement calculations by parallel slicing for five-axis flank milling of jet engine impellers", Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 130, No. 5, pp. 051011.1-051011.12, 2008.
    Fussell, B. K., Jerard, R. B., & Hemmett, J. G., "Robust feedrate selection for 3-axis NC machining using discrete models", Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 123, No. 2, pp. 214-224, 2001.
    Fussell, B. K., Jerard, R. B., & Hemmett, J. G., "Modeling of cutting geometry and forces for 5-axis sculptured surface machining", Computer-Aided Design, Vol. 35, No. 4, pp. 333-346, 2003.
    Gradišek, ., Kalveram, ., & Weinert, K., " echanistic identi icati n specific force coefficients for a general end mill", International Journal of Machine Tools and Manufacture, Vol. 44, No. 4, pp. 401-414, 2004.
    Ho, S., Sarma, S., & Adachi, Y., "Real-time interference analysis between a tool and an environment", CAD Computer Aided Design, Vol. 33, No. 13, pp. 935-947, 2001.
    Hsu, P. L., & Yang, W. T., "Realtime 3D simulation of 3-axis milling using isometric projection", Computer-Aided Design, Vol. 25, No. 4, pp. 215-224, 1993.
    Huang, Y., & Oliver, J. H., "Integrated simulation, error assessment, and tool path correction for five-axis NC milling", Journal of Manufacturing Systems, Vol. 14, No. 5, pp. 331-344, 1995.
    Hunt, W. A., & Voelcker, H. B. An exploratory study of automatic verification of programs for numerically controlled machine tools. In:Production Automation Project Tech. Mem No. 34, University of Rochester, Rochester, N.Y., 1982.
    Imani, B. M., & Elbestawi, M. A., "Geometric simulation of ball-end milling operations", Journal of Manufacturing Science and Engineering, Transactions of the ASME, Vol. 123, No. 2, pp. 177-184, 2001.
    Imani, B. M., Sadeghi, M. H., & Elbestawi, M. A., "An improved process simulation system for ball-end milling of sculptured surfaces", International Journal of Machine Tools and Manufacture, Vol. 38, No. 9, pp. 1089-1107, 1998.
    Jerard, Robert B., Drysdale, Robert L., Hauck, Kenneth E., Schaudt, Barry, & Magewick, John, "Methods for detecting errors in numerically controlled machining of sculptured surfaces", IEEE Computer Graphics and Applications, Vol. 9, No. 1, pp. 26-39, 1989.
    Jing, H. J., Yao, Y. X., Li, J. G., & Hu, J. Y., "Method of determining integration limit for cutting force model of flat end milling process", J Tool Technol, Vol. 38, pp. 11-13, 2004.
    Karunakaran, K. P., & Shringi, R., "Octree-to-BRep conversion for volumetric NC simulation", International Journal of Advanced Manufacturing Technology, Vol. 32, No. 1-2, pp. 116-131, 2007.
    Karunakaran, K. P., & Shringi, R., "A solid model-based off-line adaptive controller for feed rate scheduling for milling process", Journal of Materials Processing Technology, Vol. 204, No. 1-3, pp. 384-396, 2008.
    Karunakaran, K. P., Shringi, R., Ramamurthi, D., & Hariharan, C., "Octree-based NC simulation system for optimization of feed rate in milling using instantaneous force model", International Journal of Advanced Manufacturing Technology, Vol. 46, No. 5-8, pp. 465-490, 2010.
    Kawashima, Y., Itoh, K., Ishida, T., Nonaka, S., & Ejiri, K., "A flexible quantitative method for NC machining verification using a space-division based solid model", The Visual Computer, Vol. 7, No. 2-3, pp. 149-157, 1991.
    Kim, G. M., Cho, P. J., & Chu, C. N., "Cutting force prediction of sculptured surface ball-end milling using Z-map", International Journal of Machine Tools and Manufacture, Vol. 40, No. 2, pp. 277-291, 2000.
    Kim, G. M., Kim, B. H., & Chu, C. N., "Estimation of cutter deflection and form error in ball-end milling processes", International Journal of Machine Tools and Manufacture, Vol. 43, No. 9, pp. 917-924, 2003.
    Kline, W. A., DeVor, R. E., & Lindberg, J. R., "The prediction of cutting forces in end milling with application to cornering cuts", International Journal of Machine Tool Design and Research, Vol. 22, No. 1, pp. 7-22, 1982.
    Knapp, W., "Circular test for three-coordinate measuring machines and machine tools", Precision Engineering, Vol. 5, No. 3, pp. 115-124, 1983.
    Koenigsberger, F., & Sabberwal, A. J. P., "An investigation into the cutting force pulsations during milling operations", International Journal of Machine Tool Design and Research, Vol. 1, No. 1–2, pp. 15-33, 1961.
    Krar, S., Gill, A., Smid, P., & Wanner, P. Machine Tool Technology Basics. Industrial Press, Inc., New York, 2002.
    Lane, J. M., Carpenter, L. C., Whitted, T., & Blinn, J. F., "Scan Line Methods for Displaying Parameterically Defined Surfaces", Communications of the ACM, Vol. 23, No. 1, pp. 23-34, 1980.
    Lazoglu, I., Boz, Y., & Erdim, H., "Five-axis milling mechanics for complex free form surfaces", CIRP Annals - Manufacturing Technology, Vol. 60, No. 1, pp. 117-120, 2011.
    Lee, P., & Altintaş, Y., "Predicti n ball-end milling forces from orthogonal cutting data", International Journal of Machine Tools and Manufacture, Vol. 36, No. 9, pp. 1059-1072, 1996.
    Lee, S. H., & Lee, K. S., "Local mesh decimation for view-independent three-axis NC milling simulation", International Journal of Advanced Manufacturing Technology, Vol. 19, No. 8, pp. 579-586, 2002.
    Lee, S. K., & Ko, S. L., "Development of simulation system for machining process using enhanced Z map model", Journal of Materials Processing Technology, Vol. 130-131, pp. 608-617, 2002.
    Li, J. G., Gao, S. D., Zhao, H., & Ding, J., "Milling Process Simulation Based on Quadtree-Array Representation", Advanced Materials Research, Vol. 426, pp. 247-250, 2012.
    Liu, C., Esterling, D. M., Fontdecaba I Buj, J., & Mosel, E., "Dimensional verification of NC machining profiles using extended quadtrees", CAD Computer Aided Design, Vol. 28, No. 11, pp. 845-852, 1996.
    Lorong, Ph., Yvonnet, J., Coffignal, G., & Cohen, S., "Contribution of computational mechanics in numerical simulation of machining and blanking: State-of-the-art", Archives of Computational Methods in Engineering, Vol. 13, No. 1, pp. 45-90, 2006.
    Martelloti, M. E., "An analysis of the milling process", Transactions of ASME, Vol. 63, pp. 677-700, 1941.
    Mei, K. J., & Lee, R. S., "Development of parallel cutting simulation with adaptive octree model in virtual machine tool", pp. 654-658, 2012.
    Meister, A. E. NC program verification. In:4th Biennial International Machine Toll Technology Conference, 2-51-2-62, 1988.
    O'Connell, J. M., & Jablokow, A. G., "Construction of solid models from NC machining programs", Manufacturing Science and Engineering ASME, Vol. 64, pp. 157-166, 1993.
    Ozturk, E., & Budak, E., "Modeling of 5-Axis Milling Processes", Machining Science and Technology, Vol. 11, No. 3, pp. 287-311, 2007.
    Roth, D., Gray, P., Ismail, F., & Bedi, S., "Mechanistic modelling of 5-axis milling using an adaptive and local depth buffer", Computer-Aided Design, Vol. 39, No. 4, pp. 302-312, 2007.
    Roy, U., & Xu, Y., "3-D object decomposition with extended octree model and its application in geometric simulation of NC machining", Robotics and Computer-Integrated Manufacturing, Vol. 14, No. 4, pp. 317-327, 1998.
    Roy, U., & Xu, Y., "Computation of a geometric model of a machined part from its NC machining programs", CAD Computer Aided Design, Vol. 31, No. 6, pp. 401-411, 1999.
    Saturley, P. V., & Spence, A. D., "Integration of milling process simulation with on-line monitoring and control", International Journal of Advanced Manufacturing Technology, Vol. 16, No. 2, pp. 92-99, 2000.
    Shoukry, M., Nair, S., & Kalpakjian, S., "Effect of shear deformation on the dynamic plastic bending of metallic plates during normal penetration", International Journal of Engineering Science, Vol. 29, No. 9, pp. 1035-1052, 1991.
    Spence, A., Altintas, Y., & Kirkpatrick, D., "Direct calculation of machining parameters from a solid model", Computers in Industry, Vol. 14, No. 4, pp. 271-280, 1990.
    Su, C. J., Lin, F., & Ye, L., "New collision detection method for CSG-represented objects in virtual manufacturing", Computers in Industry, Vol. 40, No. 1, pp. 1-13, 1999.
    Takata, S., Tsai, M. D., Inui, M., & Sata, T., "A Cutting Simulation System for Machinability Evaluation Using a Workpiece Model", CIRP Annals - Manufacturing Technology, Vol. 38, No. 1, pp. 417-420, 1989.
    Tlusty, J., & MacNeil, P., "Dynamic of Cutting Forces in End Milling", Ann CIRP, Vol. 24, No. 1, pp. 21-25, 1975.
    Van Hook, T., "Real-Time Shaded NC Milling Display", Computer Graphics (ACM), Vol. 20, No. 4, pp. 15-20, 1986.
    Wang, H. L. (2012). Material Removal Simulation of Multi-axis NC Milling Based on Spatial Partitioning Level of Detail Model.
    Wang, W. P., "Solid modeling for optimizing metal removal of three-dimensional NC end milling", Journal of Manufacturing Systems, Vol. 7, No. 1, pp. 57-65, 1988.
    Wang, W. P., & Wang, K. K., "Geometry Modeling for Swept Volume of Moving Solids", IEEE Computer Graphics and Applications, Vol. 6, No. 12, pp. 8-17, 1986.
    Wei, Z. C., Wang, M. J., Zhu, J. N., & Gu, L. Y., "Cutting force prediction in ball end milling of sculptured surface with Z-level contouring tool path", International Journal of Machine Tools and Manufacture, Vol. 51, No. 5, pp. 428-432, 2011.
    Zhang, Y., Xu, X., & Liu, Y., "Numerical control machining simulation: a comprehensive survey", International Journal of Computer Integrated Manufacturing, Vol. 24, No. 7, pp. 593-609, 2011.
    佘振華, "空間凸輪五軸加工數值控制程式設計系統之研究", 國立成功大學博士論文, 台南市, 1997.
    吳昌樺, "應用切削幾何於五軸虛擬加工銑削力之評估", 國立成功大學碩士論文, 台南市, 2011.
    林彥宏, "五軸虛擬工具機模擬系統一般化建構之研究", 國立成功大學碩士論文, 台南市, 2004.
    梅可人, "虛擬多軸銑床組裝與後處理程式整合之研究", 國立成功大學碩士論文, 台南市, 2009.
    楊承融, "應用遺傳演算法於五軸虛擬工具機體積誤差分配", 國立成功大學碩士論文, 台南市, 2011.
    葉家秀, "靜態負載下五軸虛擬工具機之體積誤差分析", 國立成功大學碩士論文, 台南市, 2011.

    下載圖示 校內:2015-08-16公開
    校外:2015-08-16公開
    QR CODE