| 研究生: |
張耿銓 Chang, Keng-Chuan |
|---|---|
| 論文名稱: |
聚苯噁唑/黏土奈米複合材料之合成及性質之研究 Synthesis and Properties of Polybenzoxazole-Clay Nanocomposites |
| 指導教授: |
許聯崇
Hsu, Lien-Chung Steve |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 聚苯噁唑 、奈米複合材料 |
| 外文關鍵詞: | nanocomposites, polybenzoxazole |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本論文利用有機胺dodecylamine(DOA)或 4-phenoxyaniline(POA)和鈉-蒙脫土(Na+-montmorillonite)黏土進行離子交換反應,製成膨潤化有機黏土(organoclay)。再利用isophthaloyl chloride和2,2-bis(3-amino-4-hydroxyphenol) hexafluoropropane (BisAPAF)兩種單體,經由低溫聚縮合反應,合成固有黏度為0.5 dL/g的可溶性聚苯噁唑(polybenzoxazole,PBO)的前驅物(precursor)–聚羥醯胺(polyhydroxyamide,PHA)。再將不同比例有機黏土和PBO前驅物以不同合成方法混合,經過高溫加熱環化反應後,製成一種新的PBO/黏土奈米複合材料。X-光繞射分析和穿透式電子顯微鏡分析均顯示有機黏土在PBO中呈現奈米分散。熱機械分析發現PBO/黏土奈米複合材料的熱膨脹係數均隨黏土的添加量的增加而減少,其中以兩步驟合成法聚合並添加 7 % DOA-Clay的PBO/黏土奈米複合材料,其熱膨脹係數降低37 %。由熱重量分析及熱差掃瞄分析顯示PBO/黏土奈米複合材料的熱裂解溫度及其玻璃轉移溫度(Tg)皆隨添加量增加而增加,至有機黏土產生聚集而使熱裂解溫度及其Tg值下降。因此添加3wt% POA-Clay之奈米複合材料其在氮氣中的熱裂解溫度及Tg值分別增加11及12℃。通入氣氛為空氣時其熱氧化裂解溫度亦增加11℃。PBO/黏土奈米複材之薄膜的可見度隨黏土添加量增加而逐漸下降。
Abstract
A novel polybenzoxazole(PBO)/clay nanocomposite has been prepared from a PBO precursor(polyhydroxyamide,PHA) and an organoclay. The PBO precursor was made by a low temperature polycondensation reaction between isophthaloyl chloride(IC) and 2,2-bis (3-amino-4-hydroxyphenol) hexafluoropropane (BisAPAF) with an inherent viscosity of 0.5 dL/g. The organoclay was formed by a cation exchange reaction between a Na+-montorillonite clay and an ammonium salt of dodecylamine(DOA) or 4-phenoxyaniline(POA). Both x-ray diffraction (XRD) and transmission electron microscope (TEM) analyses showed that the organoclay was dispersed in PBO matrix in a nanosacle. The in-plane coefficient of thermal expansion (CTE) of PBO/clay film was decreased with the increasing amounts of organoclay. The CTE of PBO/clay film which was prepared by a two-step polymerization and contained 7 wt % DOA-clay was decreased 37% compared to the pure PBO film. Both of the glass transition temperature (Tg) and the thermal decomposition temperature of PBO/clay film increased with increasing amounts of organoclay. They stopped increasing when the organoclay began to aggregate. The thermal decomposition temperature in nitrogen and the glass transition temperature(Tg) of the PBO/clay film containing 3 wt % clay were increased 11oC and 12oC, respectively. The thermal oxidative decomposition temperature of the PBO/clay film was also increased 11℃ in air. The transparency of the PBO/clay film was decreased with the increasing amounts of organoclay.
參考文獻
1. 蔡中燕, 工業材料, 125期(1997), 120.
2. 蔡中燕, 化工資訊, Vol.2(1998), 28.
3. Mittal, K. L., Polyimides: Synthesis Characterization and Application, Vol I(1984), 985-989.
4. Tummala, R. R., Rymaszewski, E. J., Microelectronics Packaging Handbook(1989), 864.
5. Ree, M., Kim, K., Woo, S. H., Chang, H., J. Appl. Phys., Vol.12(1997), 698.
6. Auman, B. C., Myers, T. L., Higley, D. P., J. Polym. Sci., Part A: Polym. Chem. Vol.35(1997), 2441.
7. Goff, D., Yuan, E., Polym. Mater. Sci. Eng. Vol.59(1988), 186.
8. Labadie, J., Hedrick, J. Soc. Adv. Mater. Process Eng. J. Vol.26(1990), 19.
9. 王守明, 礦產保護與利用, 第二期(1993), 21.
10. Pinnavaia, T. J., Science Vol.26(1983), 365.
11. May, C., Tanaka, Y., Epoxy Resins:Chemistry and Technology, Vol.17(1984), 983.
12. Lee, H., Neville K., Handbook of Epoxy Resins Vol.42(1967), 3561-3569.
13. Genetti, Materials Research Society Symposium Proceeding Electronic Packaging Materials Science IX, Vol.6(1997), 445.
14. Hunter, R. J. , Foundation of Colloid Science , vol. I(1992), 25.
15. Giannelis, E. P., Adv. Mater. Vol.8(1996), 29.
16. Akelah, A., Moet, A., J. App. Polym. Sci., Vol.55(1994), 153.
17. Kingery, W. D., Bowen, H. K., Uhlmann, D. R., Introduction to Ceramiccs, (1975), 594-596.
18. Theng, B. K. G., The Chemistry of Clay-Organic reactions, (1974), 264-267.
19. Grim, R. E., Clay Mineralogy, Vol.2(1968), 331-338.
20. Barrer, R. M., Clays Clay Miner, Vol.37(1989), 385.
21. Lee, J. F., Clays Clay Miner, Vol.38(1990), 113.
22. Wu J., Lerner, M., Chem. Mater, Vol.5(1993), 835.
23. Giannelis, E. P., Adv. Mater, Vol.8(1996), 29.
24. Gelfer, M. Y., Burger, C., Hsiao, B. S., Chu, B., Song, H. H., Carlos, A. O., Liu, L., Si, M., Rafailovich, M., Polymeric Materials: Science & Engineering, Vol.85(2001), 16.
25. Brinker, C. J., Scherer, G. W., Sol-Gel Science, (1990), 555-561.
26. Mark, J. E., Lee, C. Y., Binaconi, P. A., Hybrid Organic-Inorganic Composites, Vol.5(1995), 585.
27. Terasava, M., Minami, S., Rubin, J., Hybird Microelectron ,Vol.6 (1993) ,607.
28. McPherson, J. W., Dunn, C. F., J. Vac. Sci. Technol. Vol.5(1987), 1321.
29. Yost, F. G., Scripta Mat.,Vol.23(1989), 1323.
30. Dang, C. D., Mather, P. T., Alexander, M. D. JR., Grayson, C. J., Houtz, M. D., Spry, R. J., Arnold, F. E., Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 38(2001), 1991.
31. Mackenzie, J. D., J. of Non-Crysatlline Solids, Vol.100(1988), 162.
32. Willian R. S., Edmund P. W., Journal of Polymer Science Part A, Vol.31(1993), 2081.
33. Nishizaki, S., Fukami, A., Kagayo Kagaku ZassKi, Vol.66(1983), 382.
34. Joseph, W. D., Abed, J. C., Mercier, R., McGrath, J. E., Polymer, Vol.35(1994), 5046.
35. Haba, O., Okazaki, M., Nakayama, T., Ueda, M., J. Photopolym. Sci. Technol., Vol.10(1997), 55.
36. Seino, A., Mochizuki, O., Haba, O., Ueda, M., J. Polym. Sci., Vol.36(1998), 2261.
37. Joseph, W. D., Mercier, R., Prasad, A., Marand, H., McGrath, J. E., Polymer, Vol.24(1993), 685.
38. Tokoh, A., Photosensitive Polymers, Vol.12(1999), 89.
39. Roy, R., Komarneni, S., Roy, D. M., Mater. Res. Soc. Symp. Proc. Vol.22(1984), 347.
40. Lan, T., Pinnavaia, T. J., Chem. Mater., Vol.6(1994), 2216.
41. Messersmith, P. B., Giannelis, E. P., Chem. Mater., Vol.6(1994), 1719.
42. Yano, K., Usuki, A., Okada, A., J. Polym. Sci., Part A: Polym Chem Vol.35(1997), 2289.
43. Tyan, H. L., Liu, Y. C., Wei, K. H., Polymer, Vol.40(1999), 4877.
44. Wang, M. S., Pinnavaia, T., J. Chem. Mater., Vol.6(1994), 468.
45. Al-Esaimi, M. M. J. App. Polym. Sci. Vol.64(1997), 367.
46. Gonsalves, K. E., Chen, X., Baraton, M. I., Nanostruc. Mater., Vol.9(1997), 181.
47. Usuki, A., Kojima, Y., Kawasumi, M., Okada, A., Fukushima, Y., Kurauchi, T., Kamigaito, O., J. Mater. Res., Vol.8(1993), 1179.
48. Yokota, R., Horiuchi. R., Kochi, M., Soma, H., Mita, I., J. Polym. Sci: Polym. Lett. Vol.26(1988), 215.
49. Akelah, A., Moet, A., J. App. Polym. Sci., : App. Polym. Sym., Vol.55(1994), 153.
50. Zilg, C., Thomann, R., Miilhaupt, R., Finter, J. Adv. Mater. Vol.11(1999), 49.
51. LeBaron, P. C., Wang, Z. S., Pinnavaia, T., Appl. Clay Sci. Vol.15(1999), 11.
52. Yano, K., Usuki, A., Okada, A., Kurauchi, T., Kamigaito, O., J. Polym. Sci., Part A: Polym. Chem. Vol.31(1993), 2493.
53. Lan, T., Kaviratna, P. D., Pinnavaia, T., J. Chem. Mater., Vol.6(1994), 573.
54. 郭文法, 工業材料, 125期(1997), 129.
55. 吳仁傑, 工業材料, 125期(1997), 115.
56. 田宏隆, 韋光華, 黏土/聚亞醯胺奈米複合材料之合成與性質, 交通大學材料科學與工程研究所
57. 廖建勛, 工業材料, 125期(1997), 108.
58. 廖建勛, 化工資訊, Vol.2(1998), 20.
59. 賴宏仁, 工業材料, 153期(1999), 94.
60. 郭俊鑫, 工業技術研究院材料研究所, (2000) 1-4.
61. Yano, K., Usuki, A., Okada, A., Kurauchi, T., Kamigaito, T., J. of Polym. Sci.:Part A: Polymer Chemistry, Vol.31(1993), 2493.
62. Gu, A., Kuo, S. W., Chang, F. C., J. of Appl. Polym. Sci., Vol. 79.(2001), 1902.
63. Gu, A., Chang, F. C., J. of Appl. Polym. Sci. Vol. 79(2001), 289.
64. Xiao, M., Sun, L., Liu, J., Li, Y., Gong, K., Polymer, Vol.43(2002), 2245.