| 研究生: |
李懷遠 Li, Huai-Yuan |
|---|---|
| 論文名稱: |
利用盆栽試驗探討攝食遭重金屬污染蔬菜之健康風險及其對蔬菜中抗氧化活性之影響 Risk assessment of consuming vegetables cultivating in soil with heavy metals contamination and its influence on anti-oxidative activities by the pot experiments |
| 指導教授: |
陳秀玲
Chen, Hsiu-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 食品安全衛生暨風險管理研究所 Department of Food Safety / Hygiene and Risk Management |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 蔬菜 、盆栽試驗 、重金屬 、抗氧化 、風險 |
| 外文關鍵詞: | Vegetable, Pot experiment, Heavy metal, Antioxidant, Risk |
| 相關次數: | 點閱:66 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年台灣環境污染議題日益嚴重,其中重金屬為重要之污染類型,環境中之重金屬污染可經由土壤、空氣及水源等途徑進入農作物內,同時重金屬具有不易裂解之特性,因此容易累積於農作物中而提高其重金屬含量。雖有許多文獻指出攝入受污染之農作物後,造成民眾體內重金屬之累積及健康上之不良影響,然對於農作物吸收來自環境中重金屬時,重金屬累積對農作物本身抗氧化物等成分影響之相關國內外研究卻鮮少深入探討之。
本研究之目的為以台灣受重金屬污染土壤與無污染土壤,種植不同種類之蔬菜,探討不同蔬菜經由土壤傳輸而吸收重金屬之累積狀況,並評估種植過程中因重金屬之累積導致蔬菜中抗氧化物含量之變化,最後以蔬菜中重金屬含量分析結果,進行民眾攝取蔬菜之健康風險評估,以此結果提供民眾飲食建議與受重金屬污染土地之管理規劃策略。
本研究挑選已受重金屬污染之土壤(實驗組1)與無污染之土壤(即培養土,對照組),實驗組2以人工添加重金屬於對照組土壤進行盆栽試驗。挑選五種蔬菜進行盆栽試驗,每一種蔬菜以實驗組1、實驗組2各兩個樣本與對照組一個樣本為一個單位,進行三重複栽種,最後完成75盆蔬菜樣品之栽種,並以此結果評估所栽種之蔬菜對人體之健康風險評估與其污染對於蔬菜抗氧化活性之影響。
土壤之重金屬分析結果顯示,於實驗組1與實驗組2中種植完後,土壤中鎘與銅之濃度均有下降趨勢,其下降程度以空心菜與甘藷葉組較高。蔬菜之生長狀況結果顯示,於實驗組1-Cd、實驗組2-Cd與對照組中,馬鈴薯與甘藷之植株生長高度與採收量,於實驗組具顯著性下降。且於實驗組1-Cu、實驗組2-Cu與對照組中,甘藷之植株生長高度與採收量,於實驗組亦具顯著性下降。
蔬菜之重金屬分析結果顯示,於實驗組1-Cd與實驗組2-Cd中鎘濃度最高者為空心菜(2.38±0.18 mg/kg、0.92±0.40 mg/kg)。另於實驗組1-Cu與實驗組2-Cu中銅濃度最高者為馬鈴薯與空心菜(3.21±0.17 mg/kg、5.10±0.62 mg/kg)。蔬菜之重金屬BAF結果顯示,於實驗組1-Cd中鎘BAF最高者為空心菜(0.29±0.02)。於實驗組1-Cu中銅BAF最高者為馬鈴薯(0.008±0.00)。因此由本研究中發現於鎘污染組,均以空心菜之鎘累積能力最強,另於銅污染組則為馬鈴薯與空心菜,相對的,甘藷葉於兩種金屬污染均屬累積能力較弱者。
蔬菜之抗氧化物分析結果顯示,於實驗組1-Cd與實驗組2-Cd中維生素C最高者為甘藷葉(25.3±4.01 g/kg、13.6±0.82 g/kg),於不同組別採收之空心菜與甘藷葉中維生素C濃度達顯著性差異。於實驗組1-Cu與實驗組2-Cu中維生素C最高者亦為甘藷葉(28.4±4.38 g/kg、20.8±0.76 g/kg),於不同組別採收之甘藷葉中維生素C濃度達顯著性差異。另於實驗組1-Cd與實驗組2-Cd中維生素E最高者分別為番茄與甘藷(17.1±0.57 mg/kg、27.3±0.40 mg/kg),不同組別採收之甘藷葉與番茄中維生素E濃度達顯著性差異。於實驗組1-Cu與實驗組2-Cu中維生素E最高者亦為番茄與甘藷(18.6±0.29 mg/kg、22.3±3.51 mg/kg),不同組別採收之甘藷中維生素E濃度達顯著性差異。
經攝取受污染蔬菜之健康風險結果顯示,不同年齡族群之P50-P95之鎘HI最高者為0-3歲(4.80-11.6),且於不同年齡層之HI結果均大於1,表示攝取這些受鎘污染之蔬菜確實對民眾具顯著性之非致癌性健康影響。另不同年齡族群之P50-P95之銅HI最高者亦為0-3歲(0.26-0.56),且於不同年齡層之HI結果均小於1,表示攝取這些受銅污染之蔬菜對民眾非具顯著性之非致癌性健康影響。然台灣至今仍有許多土地遭受重金屬之嚴重污染,因此對於台灣民眾經攝取蔬菜而暴露於重金屬之健康影響,仍為須關注之重要議題。
The aims of this study were to evaluate the accumulation of the heavy metals in vegetables and its influence for the antioxidants by pot experiments. In addition, we also estimated the health risk of the residents via consuming these contaminated vegetables. Totally, 75 pots were cultured for five kinds of vegetables with the same soil and analyzed the metal level in soil, water and vegetables. In addition, the antioxidants level for each vegetable were also analyzed. These results were utilized to evaluate the risk of consuming vegetables.
The result showed that the concentration of Cd and Cu in water spinach and potato were the highest among other vegetables. Meanwhile, the antioxidant monitoring in all the vegetables demonstrated that vitamin C level within sweet potato leaf and the vitamin E level in tomato and sweet potato were the highest among other vegetables. Finally, the results of health risk for the residents showed that the HI were above than 1 in all age groups via consuming the Cd-contaminated vegetables and the HI were lower than 1 in all age groups via consuming the Cu-contaminated vegetables. Therefore, there is an important issue in the exposure of heavy metals through the ingestion of vegetables.
Ahada C, Patel A. 2015. Effects of heavy metals (Cu and Cd) on growth of leafy vegetables - Spinacia oleracea and Amaranthus caudatus. International Research Journal of Environment Sciences 4: 63-69
Akpor O, Muchie M. 2010. Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. International Journal of the Physical Sciences 5: 1807-17
Ambrosini GL, de Klerk NH, Fritschi L, Mackerras D, Musk B. 2008. Fruit, vegetable, vitamin A intakes, and prostate cancer risk. Prostate Cancer and Prostatic Diseases 11: 61-66
Anderson PR, Christensen TH. 1988. Distribution coefficients of Cd, Co, Ni, and Zn in soils. Journal of Soil Science 39: 15-22
Antonious GF, Kochhar TS, Coolong T. 2012. Yield, quality, and concentration of seven heavy metals in cabbage and broccoli grown in sewage sludge and chicken manure amended soil. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering 47: 1955-65
Balkhair KS, Ashraf MA. 2016. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Sciences 23: S32-S44
Bashri G, Parihar P, Singh R, Singh S, Singh VP, Prasad SM. 2016. Physiological and biochemical characterization of two Amaranthus species under Cr(VI) stress differing in Cr(VI) tolerance. Plant Physiology Biochemistry 108: 12-23
Bazzano LA, He J, Ogden LG, Loria CM, Vupputuri S, et al. 2002. Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first national health and nutrition examination survey epidemiologic follow-up study. American Journal of Clinical Nutrition 76: 93-99
Bentley K, Soebandrio A. 2017. Dietary exposure assessment for arsenic and mercury following submarine tailings placement in Ratatotok Sub-district, North Sulawesi, Indonesia. Environmental Pollution 227: 552-59
Bhuyan MS. 2017. A critical review of heavy metal pollution and its effects in Bangladesh. Science Journal of Energy Engineering 5: 95-108
Bi C, Zhou Y, Chen Z, Jia J, Bao X. 2018. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Science Total Environment 619-620: 1349-57
Bremner J. 1996. Nitrogen-total. Methods of soil analysis part 3—chemical methods: 1085-121
Collin VC, Eymery F, Genty B, Rey P, Havaux M. 2008. Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environment 31: 244-57
Dinu M, Soare R, Băbeanu C, Hoza G. 2018. Analysis of nutritional composition and antioxidant activity of sweet potato (Ipomoea batatas L.) leaf and petiole. Journal of Applied Botany and Food Quality 91: 120-25
El-Kady AA, Abdel-Wahhab MA. 2018. Occurrence of trace metals in foodstuffs and their health impact. Trends in Food Science & Technology 75: 36-45
Ellong EN, Billard C, Adenet S, Rochefort K. 2015. Polyphenols, carotenoids, vitamin C content in tropical fruits and vegetables and impact of processing methods. Food and Nutrition Sciences 06: 299-313
Fan Y, Li Y, Li H, Cheng F. 2018. Evaluating heavy metal accumulation and potential risks in soil-plant systems applied with magnesium slag-based fertilizer. Chemosphere 197: 382-88
Farahat EA, Galal TM, Elawa OE, Hassan LM. 2017. Health risk assessment and growth characteristics of wheat and maize crops irrigated with contaminated wastewater. Environmental Monitoring and Assessment 189: 535
Garcia-Salas P, Morales-Soto A, Segura-Carretero A, Fernandez-Gutierrez A. 2010. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules 15: 8813-26
Gardestedt C, Plea M, Nilsson G, Jacks B, Jacks G. 2009. Zinc in soils, crops, and meals in the Niger Inland Delta, Mali. Ambio 38: 334-38
Gee GW, Bauder JW. 1986. Particle-size analysis 1. Methods of soil analysis: Part 1—Physical and mineralogical methods: 383-411
Gulcin I, Berashvili D, Gepdiremen A. 2005. Antiradical and antioxidant activity of total anthocyanins from Perilla pankinensis decne. Journal of Ethnopharmacology 101: 287-93
Gupta S, Prakash J. 2009. Studies on Indian green leafy vegetables for their antioxidant activity. Plant Foods for Human Nutrition 64: 39-45
Haard NF. 1984. Postharvest physiology and biochemistry of fruits and vegetables. Journal of Chemical Education 61: 277-83
Hong YS, Song KH, Chung JY. 2014. Health effects of chronic arsenic exposure. Journal of Preventive Medicine & Public Health 47: 245-52
Imai M, Kikuchi H, Denda T, Ohyama K, Hirobe C, Toyoda H. 2009. Cytotoxic effects of flavonoids against a human colon cancer derived cell line, COLO 201: a potential natural anti-cancer substance. Cancer Letters 276: 74-80
Jabeen F, Aslam A, Salman M. 2018. Heavy metals toxicity and associated health risks in vegetables grown under soil irrigated with sewage water. Universal Journal of Agricultural Research 6: 173-80
Ji K, Kim J, Lee M, Park S, Kwon HJ, et al. 2013. Assessment of exposure to heavy metals and health risks among residents near abandoned metal mines in Goseong, Korea. Environmental Pollution 178: 322-28
Kant AK, Block G, Schatzkin A, Nestle M. 1992. Association of fruit and vegetable intake with dietary-fat intake. Nutrition Research 12: 1441-54
Katrien D. 2008. Voluntary risk assessment of copper, copper ii sulphate pentahydrate, copper(i)oxide, copper(ii)oxide, dicopper chloride trihydroxide. European union risk assessment report
Killadi B, Chaurasia R, Shukla DK, Dikshit A. 2018. Physio-chemical properties and pigment changes in the pericarp of mango cultivars during storage and ripening. Journal of Environmental Biology 39: 373-78
Kongkachuichai R, Charoensiri R, Yakoh K, Kringkasemsee A, Insung P. 2015. Nutrients value and antioxidant content of indigenous vegetables from Southern Thailand. Food Chemistry 173: 838-46
Lai HY, Chen BC. 2013. The dynamic growth exhibition and accumulation of cadmium of Pak choi (Brassica campestris L. ssp. chinensis) grown in contaminated soils. International Journal of Environmental Research and Public Health 10: 5284-98
Li B, Wang Y, Jiang Y, Li G, Cui J, et al. 2016. The accumulation and health risk of heavy metals in vegetables around a zinc smelter in northeastern China. Environmental Science and Pollution Research 23: 25114-26
Li Z, Schneider RL, Morreale SJ, Xie Y, Li C, Li J. 2018. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma 310: 143-52
Lin Y-W, Liu T-S, Guo H-Y, Chiang C-M, Tang H-J, et al. 2015. Relationships between Cd concentrations in different vegetables and those in arable soils, and food safety evaluation of vegetables in Taiwan. Soil Science and Plant Nutrition 61: 983-98
Liu RH. 2004. Potential synergy of phytochemicals in cancer prevention: mechanism of action. Journal of Nutrition 134: 3479s-85s
Lock K, Pomerleau J, Causer L, Altmann DR, McKee M. 2005. The global burden of disease attributable to low consumption of fruit and vegetables: implications for the global strategy on diet. Bulletin of the World Health Organization 83: 100-08
Maratab Ali, Khan Mr, Rakha A, Khalil Aa, Lillah K, Murtaza G. 2017. Impression of instinctive cookery methods along with altered processing time on the potential antioxidants, color, texture, vitamin C and β-carotene of selected vegetables. Journal of Food Processing & Technology 08: 2
Matovic V, Buha A, Bulat Z, Dukic-Cosic D. 2011. Cadmium toxicity revisited: focus on oxidative stress induction and interactions with zinc and magnesium. Archives of Industrial Hygiene and Toxicology 62: 65-76
Mayer LM, Xing BS. 2001. Organic matter-surface area relationships in acid soils. Soil Science Society of America Journal 65: 250-58
Michalak A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environment Studies 15: 523-30
Monsen ER. 2000. Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. Journal of the American Dietetic Association 100: 1008-09
Napoli M, Cecchi S, Grassi C, Baldi A, Zanchi CA, Orlandini S. 2019. Phytoextraction of copper from a contaminated soil using arable and vegetable crops. Chemosphere 219: 122-29
Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. Methods of soil analysis part 3—chemical methods: 961-1010
Noor-ul-Amin, Hussain A, Alamzeb S, Begum S. 2013. Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chemistry 136: 1515-23
Orsavova J, Hlavacova I, Mlcek J, Snopek L, Misurcova L. 2019. Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits. Food Chemistry 284: 323-33
Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, et al. 2001. Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bulletin of Environmental Contamination and Toxicology 66: 727-34
Pietta P-G. 2000. Flavonoids as antioxidants. Journal of natural products 63: 1035-42
Qadir M, Wichelns D, Raschid-Sally L, McCornick PG, Drechsel P, et al. 2010. The challenges of wastewater irrigation in developing countries. Agricultural Water Management 97: 561-68
Roy M, McDonald LM. 2015. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degradation & Development 26: 785-92
Rrong W, Aiping T, Ashraf MA. 2016. The effects of applying sewage sludge into Jiangxi red soil on the growth of vegetables and the migration and enrichment of Cu and Zn. Saudi Journal of Biological Sciences 23: 660-66
Sahito OM, Kazi TG, Afridi HI, Baig JA, Talpur FN, et al. 2016. Assessment of toxic metal uptake by different vegetables grown on soils amended with poultry waste: risk assessment. Water, Air, & Soil Pollution 227: 423
Sakakibara M. 2016. Phytoremediation of toxic elements-polluted water and soils by aquatic macrophyte Eleocharis acicularis. Proceeding of the 4th International Conference on Biological Science 1744: 020038
Sarker NI, Khanam MS, Islam MS. 2018. Health risk assessment of metals transfer from soil to the edible part of some vegetables grown in Patuakhali province of Bangladesh. Archives of Agriculture and Environmental Science 3: 187-97
Shelnutt SR, Goad P, Belsito DV. 2007. Dermatological toxicity of hexavalent chromium. Critical Reviews in Toxicology 37: 375-87
Sipter E, Auerbach R, Gruiz K, Mathe-Gaspar G. 2009. Change of bioaccumulation of toxic metals in vegetables. Communications in Soil Science and Plant Analysis 40: 285-93
Sipter E, Rozsa E, Gruiz K, Tatrai E, Morvai V. 2008. Site-specific risk assessment in contaminated vegetable gardens. Chemosphere 71: 1301-07
Sultana MS, Rana S, Yamazaki S, Aono T, Yoshida S, Kanan S. 2017. Health risk assessment for carcinogenic and non-carcinogenic heavy metal exposures from vegetables and fruits of Bangladesh. Cogent Environmental Science 3: 1291107
Sun Y, Zhou Q, Diao C. 2008. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology 99: 1103-10
Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proceedings of the National Academy of Sciences 97: 4991-96
Wang W, Zhang Z, Yang G, Wang Q. 2014. Health risk assessment of Chinese consumers to nickel via dietary intake of foodstuffs. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment 31: 1861-71
Wang YC, Qiao M, Liu YX, Zhu YG. 2012. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. Journal of Environmental Sciences 24: 690-98
Wójtowicz A, Zalewska-Korona M, Jabłońska-Ryś E, Skalicka-Woźniak K, Oniszczuk A. 2018. Chemical characteristics and physical properties of functional snacks enriched with powdered tomato. Polish Journal of Food and Nutrition Sciences 68: 251-62
Xie LP, Hao PF, Cheng Y, Ahmed IM, Cao FB. 2018. Effect of combined application of lead, cadmium, chromium and copper on grain, leaf and stem heavy metal contents at different growth stages in rice. Ecotoxicology and Environmental Safety 162: 71-76
Yamada M, Asakura K, Sasaki S, Hirota N, Notsu A, et al. 2014. Estimation of intakes of copper, zinc, and manganese in Japanese adults using 16-day semi-weighed diet records. Asia Pacific Journal of Clinical Nutrition 23: 465-72
Yang Y, Zhang FS, Li HF, Jiang RF. 2009. Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. Journal of Environmental Management 90: 1117-22
Yoon GA, Yeum KJ, Cho YS, Chen CY, Tang G, et al. 2012. Carotenoids and total phenolic contents in plant foods commonly consumed in Korea. Nutrition Research and Practice 6: 481-90
Zeng F, Wei W, Li M, Huang R, Yang F, Duan Y. 2015. Heavy metal contamination in rice-producing soils of hunan province, China and potential health risks. International Journal of Environmental Research and Public Health 12: 15584-93
Zeng X-B, Li L-F, Mei X-R. 2008. Heavy metal content in Chinese vegetable plantation land soils and related source analysis. Agricultural Sciences in China 7: 1115-26
Zhou H, Yang WT, Zhou X, Liu L, Gu JF, et al. 2016. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. International Journal of Environmental Research and Public Health 13: 289
Zhuang P, McBride MB, Xia HP, Li NY, Lia ZA. 2009. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Science of the Total Environment 407: 1551-61
行政院環境保護署土壤及地下水污染整治基金管理會. 2017. 106年度土壤及地下水污染整治年報
行政院環境保護署土壤及地下水污染整治基金管理會. 2018. 107年度土壤及地下水污染整治年報
李子純. 1980. 盆栽試驗技術. 農業試驗所農業化學組期刊論文
陳孟沅. 2012. 汞與甲基汞對蔬菜危害與蓄積影響之研究. 國立屏東科技大學食品科學系碩士論文