| 研究生: |
翁誌隆 Weng, Chih-Lung |
|---|---|
| 論文名稱: |
以積分方程式解及修正雙曲線模式探討聲子熱傳 A study on phonon heat transfer by solving integral equation and modified hyperbolic models |
| 指導教授: |
吳志陽
Wu, Chih-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 雙曲線 、熱傳 、聲子 |
| 外文關鍵詞: | heat transfer, phonon, hyperbolic |
| 相關次數: | 點閱:81 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在探討鑽石薄膜的熱傳,採用兩種聲子輻射傳輸方程式(EPRT)的解法。首先,將EPRT轉為積分方程式,並利用積分格點法求解,由比較離散方向法與積分格點法所得的結果,可以發現積分格點法可以在聲學厚度小時,以較少的空間與角度格點數得到較離散方向法準確的結果,但在聲學厚度大時,其需要較多數值計算時間。然後,運用積分格點法求解受脈衝加熱的鑽石薄膜,並討論其熱通量隨時間的變化。接著以Schuster-Schwarzschild近似來推導雙曲線模式的修正邊界條件,並以 近似來修正雙曲線熱傳方程式的熱波速率,使其與EPRT一樣。修正邊界條件與修正方程式所得結果顯示:在靠近波前與邊界附近,本方法較其他雙曲線模式更為接近積分格點法所得的結果。
The purpose of this work is to investigate heat trasnsfer in a diamond thin film. Two methods based on the equation of phonon radiative transport (EPRT) are considered. First, we transform the EPRT into an integral equation, and then solve the equation by the quadrature method (QM). The results obtained by the QM and by the discrete ordinate method are compared. The results obtained by the QM with less position and direction grids agree well with those obtained by the discrete ordinate method. The former is more accurate than the latter in acoustically thin media, but the former takes more computational time in acoustically thick media. Then, the temporal profile of heat flux profiles of diamond thin films exposed to thermal pulses are discussed. Next, the Schuster-Schwarzschild approximation is used to develop modified boundary conditions of a hyperbolic model in which the hyperbolic heat conduction equation is modified by using the approximation to make heat wave speed to be the same as the EPRT. The results obtained by the modified hyperbolic equation with modified boundary conditions show batter agreement with those obtained by the QM around the boundaries and the wave front.
1.Ziman, J. M., Electrons and phonons, Oxford University Press, London, 1960.
2.Majumdar, A., “Microscale heat conduction in dielectric thin film,” ASME Journal of Heat Transfer, Vol. 115, pp. 7-16, 1993.
3.Joshi, A. A., and Majumdar, A., “Transient ballistic and diffusive phonon heat transport in thin film,” Journal of Applied Physics, Vol. 74, pp. 31-39, 1993
4.Chen, G., “Heat conduction in micro-structured materials,” Ninth intersociety conference on thermal and thermomechanical phenomena in electronic systems, Las Vegas , USA, Vol. 2, pp. 617-621, 2004.
5.Prasher, R., “Generalized equation of phonon radiative transport,” Applied Physics Letters, Vol. 83, pp. 48-50, 2003.
6.Chen, G., “Ballistic-diffusive heat-conduction equation,” Physical Review Letters, Vol. 86, pp. 2297-2300, 2001.
7.Olfe, O. B., “A modification of the differential approximation for radiative transfer,” AIAA Journal, Vol. 5, pp.638-643, 1967.
8.Wu, C.-Y., Sutton, W. H. and Love, T. J., “Successive improvement of the modified differential approximation in radiative heat transfer,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 1, No. 4, pp. 296-300,1987.
9.Modest, M. F., “Modified differential approximation for radiative transfer in general three-dimensional media,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 3, pp. 283-288, 1989.
10.Chen, G., “Ballistic-diffusive equation for transient heat conduction from nano to macroscales,” ASME Journal of Heat Transfer, Vol. 124, pp. 320-328, 2002.
11.Yang, R., Chen, G., Laroche, M. and Taur, Y. “Simulation of nanoscale multidimen -sional transient heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation,” ASME Journal of Heat Transfer, Vol. 127, pp. 298-306, 2005.
12.Pilon, L., ”Modified method of characteristics for simulating microscale energy transport,” ASME Journal of Heat Transfer, Vol. 126, pp. 735-743, 2004.
13.Murthy, J. Y., and Mathur, S. R., ”Computation of sub-micron thermal transport using an unstructured finite volume method ,” ASME Journal of Heat Transfer, Vol. 124, pp. 1176-1181, 2002.
14.Murthy, J. Y., and Mathur, S. R., “An improved computational procedure for sub-micron heat conduction,” ASME Journal of Heat Transfer, Vol. 125, pp. 904-910, 2003.
15.Majumdar, A., ”Monte Carlo study of phonon transport in solid thin films including dispersion and polarization,” ASME Journal of Heat Transfer, Vol. 123, pp. 749-759, 2001.
16.Schuster, A., “Radiation through a foggy atmosphere,” Astrophysical Journal, Vol. 21, pp. 1-22,1905.
17.Schwarzschild, K., “Uber das Gleichgewicht der sonnenatmospharen (Equilibrium of the sun`s atmosphere),” Akad. Wiss. Gottingen, Math.-Phys. Kl. Nachr., Vol. 195, pp. 41-53, 1906.
18.Olson, G. L., Auer, L. H. and Hall, M. L., “Diffusion, , and other approximation forms of radiationtransport,” Jounral of Quantitative Spectroscopy and Radiative Transfer, Vol. 64, pp. 619-634, 2000.
19.Modest, M. F., Radiative heat transfer, McGraw-Hill Press, New York, 1993.
20.Wu, C.-Y., “Propagation of scattered radiation in a participating planar medium with pulse irradiation,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 64, pp. 537-548, 1999.
21.Pomraning, G. C., The equation of radiation hydrodynamics, Pergamon Press, Oxford, 1973.
22.Chen, G., Nanoscale energy transport and conversion, Oxford University Press, New York, 2005.