簡易檢索 / 詳目顯示

研究生: 陳建吾
Chen, Chien-Wu
論文名稱: 加勁擋土牆動態行為之模擬
指導教授: 陳景文
Chen, Jing-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 95
中文關鍵詞: 動態模擬振動台試驗FLAC程式加勁擋土牆
相關次數: 點閱:76下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   加勁擋土牆因施工簡單,耐震能力佳,且能抵抗較大的差異沈陷等優點,已逐漸取代傳統重力式擋土牆,成為擋土設施的主流,台灣也大量的使用加勁擋土牆於邊坡穩定。而在921集集地震當中,有許多的結構物遭到破壞,其中也包含加勁擋土牆,因此對於加勁擋土牆於動態載重下的行為,有必要做進一步的了解。
      因此,本研究以二維有限差分法程式FLAC(Fast Lagrangian Analysis of Continua),建立數值模型,牆體考慮為二維平面應變狀況,並使用Duncan(1980)提出的雙曲線土壤模數模型來修正不同圍壓下的土壤模數,而以莫爾庫倫元素與二力桿件元素模擬背填土壤及加勁材。
      首先選擇Perez(1999)於華盛頓大學所做的振動台試驗進行動態行為之模擬,模擬的結果與試驗量測到的牆面變位、牆體位移等,進行比對。確定了此模型在模擬動態行為可達一定的合理範圍之後,接著再針對加勁擋土牆之內部設計因子做參數分析,並探討各種動態載重之參數,分析對加勁擋土牆牆面變形,加勁材內部應力狀態等之影響,藉以更進一步了解加勁擋土牆動態行為。
      結果發現,加勁材埋設長度對於加勁擋土牆的動態行為有顯著的影響,埋設長度越長可有效的減低牆面變形;而所輸入的振動頻率若接近擋土牆的自然頻率,則影響會特別明顯。

    none

    摘 要 I 誌 謝 II 目 錄 III 圖目錄 VII 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 1 1.3 研究方法與流程 2 1.4 論文內容 2 第二章 文獻回顧 4 2.1 擋土結構物介紹 4 2.2 加勁擋土牆原理 6 2.3 加勁擋土牆穩定分析 8 2.3.1 外部穩定分析 8 2.3.2 內部穩定分析 8 2.4 內部穩定分析 9 2.4.1 極限平衡分析法 9 2.4.2 工作應力分析法 12 2.5 加勁土壤分析模型 12 2.5.1 分離元素模型 13 2.5.2 複合元素模型 14 2.5.3 數值分析法介紹 14 2.6 加勁擋土牆動態分析 17 2.6.1 擬靜態土壓力原理 17 2.6.2 地震加速度係數之選定 19 2.7 模型試驗 20 第三章 加勁擋土牆數值模型之發展 24 3.1 FLAC程式介紹 24 3.2 FLAC內建材料模式 24 3.2.1 彈性材料模式 25 3.2.2 橫向等向性材料模式 25 3.2.3 莫爾庫倫材料模式 26 3.2.4 空洞模式 26 3.3 FLAC界面元素 26 3.4 FLAC內建結構元素 27 3.5 發展數值模型 28 3.5.1 模型建立 28 3.5.2 邊界條件 28 3.5.3 土壤模型 29 3.5.4 加勁材料模型 31 3.5.5 面版 35 3.5.6 平衡準則 35 3.5.7 加勁擋土牆建造 36 3.6 動態分析 36 3.6.1 輸入振動 36 3.6.2 邊界設定 37 3.6.3 阻尼系統 38 第四章 振動台試驗之數值模擬 41 4.1 振動台試驗 41 4.1.1 試驗設備介紹 41 4.1.2 試驗過程 42 4.1.3 振動台試驗結果 45 4.2 數值分析過程 46 4.2.1 模型建立 46 4.2.2 輸入振動 46 4.2.3 阻尼系統 47 4.3 模擬結果討論 52 4.3.1 牆面變位 52 4.3.2 牆面變位歷時 59 4.3.3 牆體變位量 61 第五章 參數分析 67 5.1 分析模型建立 67 5.2 靜態穩定 70 5.2.1 土壓力分佈 70 5.2.2 加勁材軸力分佈 71 5.2.3 加勁材埋設長度之影響 71 5.2.4 加勁材間距與勁度之影響 71 5.3 動態分析 74 5.3.1 振動頻率 74 5.3.2 動態土壓力 77 5.3.3 加勁材埋設長度之影響 77 5.3.4 加勁材間距與勁度之影響 82 第六章 結論與建議 88 6.1 結論 88 6.2 建議 89 參考文獻 91

    1. 中華地工材料協會,加勁擋土結構設計及施工手冊,中華地工材料協會,(2001)。
    2. 江鑑清,「疊塊式加勁擋土牆之靜動態行為分析」,國立台灣海洋大學河海工程學系碩士論文,(2002)。
    3. 周南山,「地工合成物加勁牆分析設計之探討與評估」,地工技術,第43期,第32-42頁,(1993)。
    4. 賴盈如,「加勁擋土牆動態反應分析」,國立台灣海洋大學河海工程學系碩士論文,(2002)。
    5. Bathurst, R.J., and Koerner R.M., “Results of Class A Predictions for the RMC Reinforced Soil Wall Trials,” The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: Applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 127-171, (1988).
    6. Bathurst, R.J., and Hatami, K., “Seismic Response Analysis of a Geogrid-Reinforced Soil Retaining Wall”, Geosynthetics International, Vol.5, No.1-2, pp.127-166, (1998).
    7. Bassett, R.H. and Last, H.C., “Reinforced Earth Below Footings and Embankments,” Proceeding, Symposium on Reinforced Earth, ASCE, Pittsburgh, pp. 222-331, (1978).
    8. Burgess, G.P., “Two Full-Scale Model Geosynthetic-Reinforced Segmental Retaining Walls,” Master of Science Thesis, Royal Military College of Canada, Kingston, (1999).
    9. Duncan, J.M., Byrne, P., Wong, K.S., and Mabry, P. “Strength, Stress-Strain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses,” Geotechnical Engineering Report, No. UCB/GT/80-01, University of California, Berkeley, (1980).
    10. Gray, D.H., and Ohashi, H., “Mechanics of Fiber Reinforcement in Sand,” Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 3, pp. 335-353, (1983).
    11. Hausmann, M.R., “Strength of Reinforced Soil,” Proceeding of Eighth Australian Road Research Board Conference, Perth, Session 13, pp. 1-3, (1976).
    12. Hausmann, M.R., and Lee, K.L., “Strength Characteristics of Reinforced Soil,” Proceedings of the International Symposium on New Horizons in Construction Materials, Lehigh, Vol. 1, pp. 165-176, (1976).
    13. Hausmann, M.R., Engineering Principles of Ground Modification, McGraw-Hill, (1990).
    14. Itasca Consulting Group, Fast Lagrangian Analysis of Continua, Itasca Consulting Group, Inc.Volume I, II, III, IV, (1999).
    15. Jones, C. J.F.P., Earth Reinforcement and Soil Structures, Thomas Telford, (1997).
    16. Krizhner, F., and Rosenhouse, G., “Numerical analysis of Tunnel Dynamic Response to Earth Motions,” Tunneling and Underground Space Technology, Vol. 15, No. 3, pp. 249-258, (2000).
    17. Lade, P.V., and Lee, K.L., “Engineering Properties of Soils,” Report UCLA-ENG-7652, pp. 145, (1976).
    18. Lee, W.F., “Internal Stability Analyses of Geosynthetic Reinforced Retaining Walls,” Ph.D. dissertation, Department of Civil and Environmental Engineering, University of Washington, (2000).
    19. Lindquist, D.D., “Seismic Modeling of Geosynthetic Reinforced Slopes,” Master of Science Thesis, Department of Civil and Environmental Engineering, University of Washington, Seattle, (1998).
    20. Matsuo, O., Tsutsumi, K., Yokoyama, K. and Saito, Y., “Shaking Table Tests and Analyses of Geosynthetic-Reinforced Soil Retaining Wall,” Geosynthetic International, Volume 5, Nos. 1-2, pp. 97-126, (1998).
    21. Mitchell, J.K. and Villet, W.C.B., “Reinforcement of Earth Slopes and Embankments,” National Cooperative Highway Research Program Report 290, Transportation Research Board, p. 323, (1987).
    22. NCMA, “Segmental Retaining Walls – Seismic Design Manual”, 1st Edition, National Concrete Masonry Association, Bathurst, R. J., USA, (1998).
    23. Nova-Roessig, L., “Centrifuge studies of the seismic performance of reinforced soil structures,” Ph.D. Dissertation, University of California, Berkeley, p. 233, (1999).
    24. Paulsen, S.B., “A Numerical Model for Estimating Seismic Displacements of Reinforced Steep Slopes,” Master of Science Thesis, University of Washington, (2002).
    25. Perez, A., “Seismic Response of Geosynthetic Reinforced Steep Slopes,” Master of Science Thesis, University of Washington, (1999).
    26. Richardson, G.N. and Lee, K.L., “Seismic Design of Reinforced Earth Walls”, Journal of Geotechnical Engineering, ASCE, Vol. 101, pp. 167-188, (1975).
    27. Rowe, R.K. and Ho, S.K., “Application of Finite Element Techniques to the Analysis of Reinforced Soil Walls,” The Application of Polymeric Reinforcement in Soil Retaining Structures, P.M. Jarrett and A. McGown, Eds., NATO ASI Series, Series E: applied Sciences – Vol. 147, Kluwer Academic Publishers, Boston, pp. 541-556, (1988).
    28. Rowe, R. K., and Ho, S. K., “Keynote Lecture: A Review of the Behavior of Reinforced Soil Walls,” Earth Reinforcement Practice, Proceedings of the International Symposium on Earth Reinforcement Practice, Fukuoka, H. Ochiai, S. Hayashi and J. Otani, Eds., Balkema, Rotterdam, pp. 801-830, (1993).
    29. Sakaguchi, M., Muramatsu, M. and Nagura, K., “A Discussion on Reinforced Embankment Structures Having High Earthquake Resistance”, Proceeding of the International Symposium on Earth Reinforcement, Fukuoka, Japan, pp. 287-292, (1992).
    30. Sakaguchi, M., “Study of the Seismic Behavior of Geosynthetic Reinforced walls in Japan,” Geosynthetics International, Volume 3, No. 1, pp. 13-30, (1996).
    31. Schlosser, F. and Long, H.T., “Recent Results in French Research on Reinforced Earth,” Journal of the Construction Division, ASCE, Vol. 100, No. CO3, pp. 223-227, (1972).
    32. Seed, H.B. and Whitman, R.V., “Design of Earth Retaining Structures for Dynamic Loads,” ASCE Specialty Conference: Lateral Stresses in the Ground and Design of Earth Retaining Structures, Ithaca, NY, pp. 103-147, (1970).
    33. Vidal, H., “The Principle of Reinforced Earth,” Highway Research Record 282, pp. 1-16, (1969).
    34. Yang, M.A. and Singh, A., “Strength and Deformation Characteristics of Reinforced Sand,” National Meeting on Water Resources Engineering, ASCE, Los Angeles, Preprint 2189, (1974).
    35. Zornberg, J.G. and Mitchell, J.K., “Finite Element Analysis of Geosynthetically Reinforced Soil Walls with Sloping Backfills,” Geotechnical Engineering Report No. UCB/GT/93-04, Department of Civil Engineering, University of California, Berkeley, p. 164, (1993).

    下載圖示 校內:2005-08-23公開
    校外:2005-08-23公開
    QR CODE