| 研究生: |
許家睿 Xu, Jia-Rui |
|---|---|
| 論文名稱: |
廣泛應用之粉末化二氧化鈦和銀共蒸鍍薄膜的抗菌性能探討 Investigating into antibacterial properties of powdered titanium dioxide and silver co-evaporated thin films for scalable applications |
| 指導教授: |
鄭友仁
Jeng, Yeau-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 共蒸鍍 、銳鈦礦 、光觸媒 、摻雜 、退火 、抗菌 |
| 外文關鍵詞: | Co-evaporation, Anatase, Photocatalyst, Doping, Annealing, Antibacterial |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化鈦(TiO2)不僅是優異的半導體材料,還具備著光觸媒抗菌與良好的生物相容性。並可透過對其摻雜Ag來達到晶體改變之方式,進而增強其吸光波長與抗菌能力,但受到製程上的限制,使得TiO2並不易有銳鈦礦的產生。而本論文之目的是藉由具經濟效益的共蒸鍍製程合成不同Ag含量之薄膜,並以退火加工改變薄膜結晶,以增強其抗菌性能。最後對薄膜進行粉末化工藝及實行抗菌測試,藉此找出Ag含量差異對TiO2之效果影響,以利噴塗各式產品,使銳鈦礦之TiO2-Ag粉末可以廣泛列印。
本實驗運用共蒸鍍製程進行TiO2與不同含量Ag之合成並進行退火加工,分析薄膜之性質,最終將薄膜粉末化添加至塗料進而探討不同熱處理溫度及不同銀含量下之抗菌效果與其結構差異。在性質的分析上,分別以X光繞射儀(XRD)、掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM),以及紫外-可見光譜儀(UV-Vis)依序分析TiO2在不同銀含量、及熱處理溫度情況下結晶的變化、薄膜表面形貌與粗糙度上的差異、摻雜Ag後之光學變化,最終以刻磨方式將薄膜進行粉末化,添至塗料噴塗並進行抗菌測試(Jis z 2801)。
從各項結果顯示,退火溫度上升時,薄膜形貌會因表面的Ag團簇使粗糙度上升,並且當增加Ag含量會使得銳鈦礦的生成遭受抑制。在光學表現上,Ag的摻雜須在銳鈦礦的產生下,才能使薄膜波長往可見光逐漸偏移,達到修飾光觸媒性能的效果。在抗菌的表現上也顯示出,有效降低Ag含量不僅能降低Ag毒性的疑慮還能凸顯出銳鈦礦的生成對於抗菌的助益,也驗證了薄膜粉末化這項工藝對於抗菌噴塗的可行性。與文獻所用的溶膠凝膠法、離子噴塗法相比,不僅去除了溶膠凝膠法毒性物質殘留的疑慮,與離子噴塗純度的難點,以及兩者在熱處理上的溫度限制,並且在抗菌上也擁有著較前者優異的表現。
Titanium dioxide (TiO2) is not only an excellent semiconductor material but also has excellent photocatalyst antibacterial properties and good biocompatibility. And doping it with Ag can enhance its light absorption wavelength and antibacterial ability. However, a scalable fabrication process is needed to produce anatase in TiO2. Therefore, this dissertation aims to synthesize thin films with different Ag contents through an economic co-evaporation process and to change the crystallization of the film by annealing to enhance its antibacterial properties. Finally, the film is powdered, and antibacterial properties are tested to find out the effect of the difference in Ag content on the impact of TiO2 to facilitate the spraying of various products of anatase TiO2-Ag powder.
This experiment used the co-evaporation process to synthesize TiO2 and Ag with different contents, conduct annealing processing, and then analyze thin film properties. Finally, the film powder was added to the coating to explore the antibacterial effect and structural difference at different heat treatment temperatures and Ag contents. In the analysis of properties, scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and ultraviolet-visible spectrometer (UV-Vis) were used to sequentially analyze TiO2 in different silver contents and heat treatment temperature, crystallization changes, differences in film surface morphology and roughness, and whether the absorbance is improved after doping with Ag. The film is finally powdered by grinding, added to the paint spray, and tested for antibacterial (JIS Z 2801).
The results show that when the annealing temperature increases, the roughness of the film morphology will increase due to the Ag clusters on the surface, and the formation of anatase will be inhibited when the Ag content is increased. In terms of optical performance, Ag doping must be produced under the production of anatase so that the film’s wavelength can be gradually shifted to visible light, and the effect of modifying the performance of the photocatalyst can be achieved. Regarding antibacterial performance, it also shows that the effective reduction of Ag content can not only reduce the doubts of Ag toxicity but also highlight the benefit of anatase formation for antibacterial and verify the feasibility of the film powdering process for antibacterial spraying. Compared with the Sol-Gel and ion spraying methods used in the literature, the process employed in this study exhibits no residue of toxic substances shown in the sol-processed and without difficulty in the purity of ion spraying. Moreover, it has no heat treatment limitations of the Sol-Gel and plasma spray methods. Most importantly, it has better antibacterial performance than the other two processes.
1] “TiO2 Nanostructures: Recent Physical Chemistry Advances,” J. Phys. Chem. C, vol. 116, no. 22, pp. 11849–11851, Jun. 2012, doi: 10.1021/jp305026h.
[2] N. R. Mathews, E. R. Morales, M. A. Cortés-Jacome, and J. A. Toledo Antonio, “TiO2 thin films – Influence of annealing temperature on structural, optical and photocatalytic properties,” Solar Energy, vol. 83, no. 9, pp. 1499–1508, Sep. 2009, doi: 10.1016/j.solener.2009.04.008.
[3] H. A. Foster, I. B. Ditta, S. Varghese, and A. Steele, “Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity,” Appl Microbiol Biotechnol, vol. 90, no. 6, pp. 1847–1868, Jun. 2011, doi: 10.1007/s00253-011-3213-7.
[4] D. Reyes-Coronado, G. Rodríguez-Gattorno, M. E. Espinosa-Pesqueira, C. Cab, R. de Coss, and G. Oskam, “Phase-pure TiO2 nanoparticles: anatase, brookite and rutile,” Nanotechnology, vol. 19, no. 14, p. 145605, Mar. 2008, doi: 10.1088/0957-4484/19/14/145605.
[5] A. O. Ibhadon and P. Fitzpatrick, “Heterogeneous Photocatalysis: Recent Advances and Applications,” Catalysts, vol. 3, no. 1, Art. no. 1, Mar. 2013, doi: 10.3390/catal3010189.
[6] D. Dambournet, I. Belharouak, and K. Amine, “Tailored Preparation Methods of TiO2 Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties,” Chem. Mater., vol. 22, no. 3, pp. 1173–1179, Feb. 2010, doi: 10.1021/cm902613h.
[7] A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surface Science Reports, vol. 63, no. 12, pp. 515–582, Dec. 2008, doi: 10.1016/j.surfrep.2008.10.001.
[8] M. Cho, H. Chung, W. Choi, and J. Yoon, “Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection,” Water Research, vol. 38, no. 4, pp. 1069–1077, Feb. 2004, doi: 10.1016/j.watres.2003.10.029.
[9] S. Josset, N. Keller, M.-C. Lett, M. J. Ledoux, and V. Keller, “Numeration methods for targeting photoactive materials in the UV-A photocatalytic removal of microorganisms,” Chemical Society Reviews, vol. 37, no. 4, pp. 744–755, 2008, doi: 10.1039/B711748P.
[10] H. M. Yadav et al., “Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 280, pp. 32–38, Apr. 2014, doi: 10.1016/j.jphotochem.2014.02.006.
[11] T. Saito, T. Iwase, J. Horie, and T. Morioka, “Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci,” Journal of Photochemistry and Photobiology B: Biology, vol. 14, no. 4, pp. 369–379, Jul. 1992, doi: 10.1016/1011-1344(92)85115-B.
[12] S. M. Gupta and M. Tripathi, “A review of TiO2 nanoparticles,” Chin. Sci. Bull., vol. 56, no. 16, pp. 1639–1657, Jun. 2011, doi: 10.1007/s11434-011-4476-1.
[13] H. M. Yadav, S. V. Otari, R. A. Bohara, S. S. Mali, S. H. Pawar, and S. D. Delekar, “Synthesis and visible light photocatalytic antibacterial activity of nickel-doped TiO2 nanoparticles against Gram-positive and Gram-negative bacteria,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 294, pp. 130–136, Nov. 2014, doi: 10.1016/j.jphotochem.2014.07.024.
[14] H. M. Yadav, T. V. Kolekar, S. H. Pawar, and J.-S. Kim, “Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO2 nanoparticles under fluorescent light,” J Mater Sci: Mater Med, vol. 27, no. 3, p. 57, Jan. 2016, doi: 10.1007/s10856-016-5675-8.
[15] B. Le Ouay and F. Stellacci, “Antibacterial activity of silver nanoparticles: A surface science insight,” Nano Today, vol. 10, no. 3, pp. 339–354, Jun. 2015, doi: 10.1016/j.nantod.2015.04.002.
[16] M. Rai, A. Yadav, and A. Gade, “Silver nanoparticles as a new generation of antimicrobials,” Biotechnology Advances, vol. 27, no. 1, pp. 76–83, Jan. 2009, doi: 10.1016/j.biotechadv.2008.09.002.
[17] J. J. Castellano et al., “Comparative evaluation of silver-containing antimicrobial dressings and drugs,” International Wound Journal, vol. 4, no. 2, pp. 114–122, 2007, doi: 10.1111/j.1742-481X.2007.00316.x.
[18] S. y. Liau, D. c. Read, W. j. Pugh, J. r. Furr, and A. d. Russell, “Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions,” Letters in Applied Microbiology, vol. 25, no. 4, pp. 279–283, 1997, doi: 10.1046/j.1472-765X.1997.00219.x.
[19] Q. L. Feng, J. Wu, G. Q. Chen, F. Z. Cui, T. N. Kim, and J. O. Kim, “A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus,” Journal of Biomedical Materials Research, vol. 52, no. 4, pp. 662–668, 2000, doi: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.
[20] D. McShan, P. C. Ray, and H. Yu, “Molecular toxicity mechanism of nanosilver,” Journal of Food and Drug Analysis, vol. 22, no. 1, pp. 116–127, Mar. 2014, doi: 10.1016/j.jfda.2014.01.010.
[21] Z. Xiu, Q. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles,” Nano Lett., vol. 12, no. 8, pp. 4271–4275, Aug. 2012, doi: 10.1021/nl301934w.
[22] H. Y. Song, K. K. Ko, I. H. Oh, and B. T. Lee, “Fabrication of Silver Nanoparticles and Their Antimicrobial Mechanisms,” p. 1.
[23] J. R. Morones et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, p. 2346, Aug. 2005, doi: 10.1088/0957-4484/16/10/059.
[24] P. Mulvaney, “Surface Plasmon Spectroscopy of Nanosized Metal Particles,” Langmuir, vol. 12, no. 3, pp. 788–800, Jan. 1996, doi: 10.1021/la9502711.
[25] H. Dislich and P. Hinz, “History and principles of the sol-gel process, and some new multicomponent oxide coatings,” Journal of Non-Crystalline Solids, vol. 48, no. 1, pp. 11–16, Mar. 1982, doi: 10.1016/0022-3093(82)90242-3.
[26] L. L. Hench and J. K. West, “The sol-gel process,” Chem. Rev., vol. 90, no. 1, pp. 33–72, Jan. 1990, doi: 10.1021/cr00099a003.
[27] C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press, 2013.
[28] J. Livage, “Basic Principles of Sol-Gel Chemistry,” in Sol-Gel Technologies for Glass Producers and Users, M. A. Aegerter and M. Mennig, Eds. Boston, MA: Springer US, 2004, pp. 3–14. doi: 10.1007/978-0-387-88953-5_1.
[29] N. Tahmasebizad, M. T. Hamedani, M. Shaban Ghazani, and Y. Pazhuhanfar, “Photocatalytic activity and antibacterial behavior of TiO2 coatings co-doped with copper and nitrogen via sol–gel method,” J Sol-Gel Sci Technol, vol. 93, no. 3, pp. 570–578, Mar. 2020, doi: 10.1007/s10971-019-05085-1.
[30] Scriven L. E., “Physics and Applications of DIP Coating and Spin Coating,” MRS Online Proceedings Library (OPL), vol. 121, p. 717, ed 1988, doi: 10.1557/PROC-121-717.
[31] J. E. Mahan, Physical Vapor Deposition of Thin Films. 2000. Accessed: Dec. 03, 2022. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2000pvdt.book.....M
[32] R. Indirajith, T. P. Srinivasan, K. Ramamurthi, and R. Gopalakrishnan, “Synthesis, deposition and characterization of tin selenide thin films by thermal evaporation technique,” Current Applied Physics, vol. 10, no. 6, pp. 1402–1406, Nov. 2010, doi: 10.1016/j.cap.2010.05.002.
[33] I.-D. Jeon, M. C. Barnes, D.-Y. Kim, and N. M. Hwang, “Origin of positive charging of nanometer-sized clusters generated during thermal evaporation of copper,” Journal of Crystal Growth, vol. 247, no. 3, pp. 623–630, Jan. 2003, doi: 10.1016/S0022-0248(02)02058-4.
[34] M. C. Barnes, D.-Y. Kim, H. S. Ahn, C. O. Lee, and N. M. Hwang, “Deposition mechanism of gold by thermal evaporation: approach by charged cluster model,” Journal of Crystal Growth, vol. 213, no. 1, pp. 83–92, May 2000, doi: 10.1016/S0022-0248(00)00359-6.
[35] S. Swann, “Magnetron sputtering,” Physics in Technology, vol. 19, no. 2, p. 67, Mar. 1988, doi: 10.1088/0305-4624/19/2/304.
[36] G. D. Alton, “High‐intensity, heavy negative ion sources based on the sputter principle (invited),” Review of Scientific Instruments, vol. 65, no. 4, pp. 1141–1147, Apr. 1994, doi: 10.1063/1.1145040.
[37] K. Ellmer, “Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties,” J. Phys. D: Appl. Phys., vol. 33, no. 4, p. R17, Feb. 2000, doi: 10.1088/0022-3727/33/4/201.
[38] J. L. Vossen, W. Kern, and W. Kern, Thin Film Processes II. Gulf Professional Publishing, 1991.
[39] I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, “Microstructural evolution during film growth,” Journal of Vacuum Science & Technology A, vol. 21, no. 5, pp. S117–S128, Sep. 2003, doi: 10.1116/1.1601610.
[40] M. W. Thompson, J. S. Colligon, R. Smith, C. Xirouchaki, and R. E. Palmer, “Deposition of size-selected metal clusters generated by magnetron sputtering and gas condensation: a progress review,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 362, no. 1814, pp. 117–124, Jan. 2004, doi: 10.1098/rsta.2003.1306.
[41] J. Koutecky and P. Fantucci, “Theoretical aspects of metal atom clusters,” Chem. Rev., vol. 86, no. 3, pp. 539–587, Jun. 1986, doi: 10.1021/cr00073a004.
[42] P. G. Vekilov, “Nucleation,” Crystal Growth & Design, vol. 10, no. 12, pp. 5007–5019, Dec. 2010, doi: 10.1021/cg1011633.
[43] D. Kashchiev, Nucleation. Elsevier, 2000.
[44] Nix W. D. and Clemens B. M., “Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films,” Journal of Materials Research, vol. 14, no. 8, pp. 3467–3473, Aug. 1999, doi: 10.1557/JMR.1999.0468.
[45] M. Wang, “6 - Composite coatings for implants and tissue engineering scaffolds,” in Biomedical Composites, L. Ambrosio, Ed. Woodhead Publishing, 2010, pp. 127–177. doi: 10.1533/9781845697372.2.127.
[46] “H132782.pdf.” Accessed: Nov. 03, 2022. [Online]. Available: http://sutlib2.sut.ac.th/sut_contents/H132782.pdf
[47] MechStudies, “Annealing Process: Definition, Meaning, Types, Advantages,” mechstudies.com, Oct. 12, 2021. https://www.mechstudies.com/annealing-process-definition-meaning-types-applications/ (accessed Dec. 15, 2022).
[48] J. H. Hsieh, R. B. Yu, Y. K. Chang, and C. Li, “Structural analysis of TiO2 and TiO2-Ag thin films and their antibacterial behaviors,” J. Phys.: Conf. Ser., vol. 339, no. 1, p. 012012, Jan. 2012, doi: 10.1088/1742-6596/339/1/012012.
[49] W. Su, S. S. Wei, S. Q. Hu, and J. X. Tang, “Preparation of TiO2/Ag colloids with ultraviolet resistance and antibacterial property using short chain polyethylene glycol,” Journal of Hazardous Materials, vol. 172, no. 2, pp. 716–720, Dec. 2009, doi: 10.1016/j.jhazmat.2009.07.056.
[50] W. Su, S. S. Wei, S. Q. Hu, and J. X. Tang, “Preparation of TiO2/Ag colloids with ultraviolet resistance and antibacterial property using short chain polyethylene glycol,” Journal of Hazardous Materials, vol. 172, no. 2, pp. 716–720, Dec. 2009, doi: 10.1016/j.jhazmat.2009.07.056.
[51] W. L. Tan and C. R. McNeill, “X-ray diffraction of photovoltaic perovskites: Principles and applications,” Applied Physics Reviews, vol. 9, no. 2, p. 021310, Jun. 2022, doi: 10.1063/5.0076665.
校內:2028-02-07公開