| 研究生: |
李其宏 Li, Chi-Hung |
|---|---|
| 論文名稱: |
應用CMB受體模式探討台灣地區原生性硫酸鹽、硝酸鹽貢獻比例 Analysis of the contribution of primary sulfate and nitrate in Taiwan by CMB receptor model |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 逸散性污染源指紋資料 、CMB模式模擬 、原生性硫酸根 、原生性硝酸根 |
| 外文關鍵詞: | Fugitive sources, CMB model, primary sulfate, primary nitrate |
| 相關次數: | 點閱:141 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對台灣地區逸散性污染源之指紋資料進行相關研究及補充,主要利用再捲揚實驗分析,配合現地採樣具代表性之樣品,實驗模擬分析TSP、PM10及PM2.5之粒徑質量比例及成分分析結果,用以建置台灣地區逸散性污染源之指紋資料。
本研究彙整實驗分析結果與相關採樣報告,重新建置指紋資料,相對於原始指紋資料,新建置之指紋資料解析元素種類較多,本研究亦配合台中地區2013年八處PM2.5採樣分析結果,進行新舊指紋資料模式模擬分析比較,可以發現新建置指紋資料之模擬解析率及各項統計規範皆優於原始指紋資料;而模擬結果計算中,原始指紋資料之原生性硫酸根及硝酸根貢獻比例大多為1% ~ 2%以下,而新建指紋資料之模擬結果中,原生性硫酸根貢獻比例約在3.5%,原生性硝酸根貢獻比例約在7%,主要因為以往硫酸根及硝酸根之來源推估大多為衍生性氣膠形成,忽略原生性排放之影響。
本研究亦針對2012年台中地區與2013年台南地區、金門地區、屏東地區等地之PM2.5採樣分析結果,進行CMB模式模擬分析比較,探討各地區各月之貢獻比例差異,模擬結果中主要原生性粒狀物之貢獻來源為道路揚塵(15.7%~36.1%,平均為27%)、交通源(4.3%~18.8%,平均為9.9%)、農廢燃燒(2.4%~17.4%,平均為7.5%)及非鐵二次冶煉(3.7%~10%,平均為6.1%)。生性硝酸根之貢獻比例中,三月至四月間貢獻比例約為5%~30%,五月至十月各地貢獻比例約在20%~60%,十二月則明顯下降為10%,整體而言,三月到四月往往是當地全年貢獻比例較低之月份,各地之原生性硝酸根貢獻時間分布差異較為明顯,同時段間之同地區空間變化差異不大;原生性硫酸根之貢獻比例中,三月至四月間原生性硫酸根貢獻比例約為5%~15%,五月到十月間則略為下降為4%~14%(基隆僅有五月到七月之結果為20%),十二月則為5%,各地原生性硫酸根貢獻比例則較不受時間變化而改變,整體而言三月通常為全年貢獻比例較高之月份,隨著月份而略微下降,但整體時間差異性不大,但各地原生性硫酸根貢獻比例差異較大,貢獻比例空間變異性大於時間變異性。
In order to analyse the contribution of primary sulfate and nitrate, the chemical composition of PM2.5 is utilized to be the data for the receptor model, USEPA CMB 8.2, which is used to analysis the contribution of emissions sources.
In CMB model, it is important to bulid the sources profile for Taiwan, and the original one is composed with the chemical composition of PM2.5 form foreign research.To replace the original sources profile, the new one is rebuilt by the resuspension result of fugitive emissions、stack sample and Taiwan research.In the model’s statistic specification, the new sources profile is better than the original one.
In the study, the the chemical composition of PM2.5, which is sampled from Taichung、Tainan and Pingtung,etc, is utilized to be the data for CMB model with the new sources profile. In the result, the primary particulate matter sources include paved dust、traffic source、Non-ferrous secondary smelting and agricultural waste burning, and the contribution is 15.7%~36.1%、4.3%~18.8%、3.7%~10% and 2.4%~17.4%, respectively.In the primary nitrate calculation, the contribution in March to April is 5%~30%, and the one in May to October is 20%~60%. The primary nitrate contribution difference of time distribution is more than one of space distribution. In the primary sulfate calculation, the contribution in March to April is 5%~15%, and the one in May to October is 4%~14%. The primary sulfate contribution difference of space distribution is more than one of time distribution.Overall, the primary nitrate contribution in March is the lowest, and the primary sulfate contribution monthly declines.
Chow, J.C., J. G. Watson, J.E. Houck (1994) “A Laboratory Resuspension Chamber to Measure Fugitive Dust Size Distributions and Chemical Composition,” Atmospheric Environment, 28(21): 3463 ~ 3481.
Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A. and Purcell, R.G. (1993) The DRI Thermal/Optical Reflectance Carbon Analysis System: Description, Evaluation and Applications in U.S. Air Quality Studies. Atmos. Environ., 27A, 1185-1201.
Chow, J.C. and Watson, J.G. (1997) ImperialValley/Mexicali Cross Border PM10 Transport Study-Final Report, prepared for the U.S. Environmental Protection Agency, San Francisco, CA, by the Desert Reseatch Institute, Reno, NV, 30 January 1997.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P. and Green, M.C. (2004) Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Horvath, H. Atmospheric Light-Absorption - a Review. Atmospheric Environment Part a-General Topics, 27(3), 293-317, 1993.
Kanakidou, M., Seinfeld, J.H., Pandis, S.N., Barnes, I., Dentener, F.J., Facchini, M.C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C.J., Swietlicki, E., Putaud, J.P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G.K., Winterhalter, R., Myhre, C.E.L., Tsigaridis, K., Vignati, E., Stephanou, E.G., Wilson, J. Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics, 5, 1053-1123, 2005.
Lohmann, U., Feichter, J. Global indirect aerosol effects: a review. Atmospheric Chemistry and Physics, 5, 715-737, 2005.
Mohan, M., Payra, S. Influence of aerosol spectrum and air pollutants on fog formation in urban environment of megacity Delhi, India. Environmental Monitoring and Assessment, 151(1-4), 265-277, 2009.
Nel, A. Air pollution-related illness: Effects of particles. Science, 308(5723), 804-806, 2005.
Nicholson, K.W. (1993) “Wind Tunnel Experiments on the Resuspension of Particulate Material,” Atmospheric Environment, 27A(2): 181-188.
Novakov T. and Penner, J.E. (1993) Large Contribution of Organic Aerosols to Cloud-Condensation-Nuclei Concentrations. Nature 365, 823-826.
Pilinis, C., and Seinfeld, J.H. (1988). Development and evaluation of an Eulerian photochemical gas-aerosol model. Atmospheric Environment (1967), 22, 1985-2001.
Seinfeld, J.H., and Pandis, S.N. (1998). Atmospheric chemistry and physics : from air pollution to climate change. Wiley, New York.
Seinfeld, J. H., Pandis, S. N. Atmospheric Chemistry and Physics From Air Pollution to Climate Change. Wiley, New York, 1998.
Sehmel, G.A. (1973) “Particle Resuspension from an Asphalt Road Caused by Car and Truck Traffic,” Atmospheric Environment, 7: 291-309.
Tsai, Y.I., Kuo, S.C., Lee, W.J., Chen, C.L., Chen, P.T. Long-term visibility trends in one highly urbanized, one highly industrialized, and two Rural areas of
USEPA,AP-42 (APPENDIX C.1) “Procedures For Sampling Surface/Bulk Dust Loading,” USEPA
台灣環保署,國內全國性排放清冊(Taiwan Emission Data System),排放污染清冊統計網,環保署
王秋森(1994)石化工廠產生的粒狀空氣污染物的受體模式之建立,行政院國家科學委員會專題研究計畫,NSC83-0421-002-318Z。
周崇光等,「大氣氣膠化學特徵觀測」,行政院環境保護署度專案計畫,EPA-94-FA11-03-A165 (2005)。
吳義林等,「衍生性氣膠與其前驅物之相關性研究」,行政院環境保護署專案計畫,EPA-90-FA17-03-90B025(2001)。
李俊璋,「台北市空氣中懸浮微粒物理化學分析及學童肺功能之研究」,碩士論文,國立台灣大學環境工程研究所,1982。
李崇德(1992)台北都會區懸浮微粒粒徑分布的物理化學特性,行政院國家科學委員會專題研究計畫,NSC81-0421-E008-10-Z。
何丁舜等,「台北地區PM10與腦中風發生率相關性之研究」,第十屆氣膠科技研討會,2003。
邱嘉斌(2005),台灣中部都會與沿海地區PM2.5及PM2.5-10氣膠化學組成與污染源貢獻量之研究,國立中興大學環境工程學系
黃慕欣、王秋森(1996)台灣三重、麥寮與林園三地區大氣中懸浮微粒 及微粒源化學組成之探討,國立台灣大學公共衛生學研究所碩士論文。
蔣本基等(1987)高雄市空氣污染物受體模式建立之研究,行政院衛生署環境保護局專題研究報告。
蔣本基等(1989)台北地區交通污染與營建工程對空氣品質影響之研究及受體模式之建立,行政院環境保護署專題研究報告。
蔣本基等(1993)台灣北、中部地區受體模式建立與應用之研究(一),行政院環境保護署專題研究報告,EPA82-e3f1-09-01。
蔣本基等(1994)台灣北、中部地區受體模式建立與應用之研究(二),行政院環境保護署專題研究報告,EPA83-e3f1-09-01。
鄭曼婷等(1998)南高屏地區空氣品質總量管制研究-子計畫E2:既有指紋資料之彙整與受體模式在南高屏地區之應用,行政院環境保護署研究報告,EPA87-FA42-03-F5。
鄭曼婷等(1999)南高屏地區空氣污染總量管制規劃-子計畫E2:受體模式空氣污染事件之應用與解析,行政院環境保護署研究報告,EPA88-FA42-03-F5