| 研究生: |
杜海雲 Denhaut, Marion |
|---|---|
| 論文名稱: |
利用田口法進行雙極脈衝式電弧推進器之改進與優化 Performance Improvement and Optimisation of a Dual-Stage Pulsed Plasma Thruster by employing Taguchi Method |
| 指導教授: |
李約亨
Li, Yueh-Heng |
| 共同指導教授: |
張博宇
Chang, Po-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 189 |
| 中文關鍵詞: | 電力推進 、脈衝電漿推進器 、雙階段脈衝電漿推進器 、後期燒蝕 、田口法 、最佳化 、朗繆爾三探針 |
| 外文關鍵詞: | Electric Propulsion, Pulsed Plasma Thruster, Dual Stage Pulsed Plasma Thruster, Late Time Ablation, Taguchi Method, Optimisation, Triple Langmuir Probe |
| 相關次數: | 點閱:345 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脈衝電漿推進器 (PPT) 係為電力推進系統之一,主要通過系統的脈衝電場和自感應磁場之間的相互作用,加速所誘發的電漿並產生推力。由於 PPT的設計簡單、體積小、成本低,以及功耗低,因此 PPT 是最具有潛力的電力推進器,應用於維持衛星高度和軌道控制等任務。然而, 針對 PPT 的主要研究著重於推進劑的進料方式和電極形狀之優化。
主要影響 PPT 的推力效率為後期燒蝕 (Late Time Ablation, 簡稱 LTA) 的損耗。實際消耗的推進劑中只有大約 40% ~ 60% 用於電漿加速。在 2019 至 2021 年,本實驗室進行雙階段脈衝電漿推進器 (DSPPT) 的性能優化。DSPPT 的設計目的在於克服 LTA 現象。在優化部分,使用田口法對 PPT 的性能進行優化,討論主要影響參數以及進行系統優化。
在高真空條件下(10^(-5) Torr),針對五個參數進行討論,分別為第一級電極的電壓、第二級電極的電壓、電極組之間的距離、電極的長度以及脈衝的頻率。放電電流測量以及使用朗繆爾三探針用於估計推進器脈衝位、電漿密度,和電漿速度。在 16 次的實驗組,獲得脈衝位、電漿密度和電漿速度的最大值分別為:1.36 μN∙s、5.88×10^22 m^(-3) 和 18 506 m∙s^(-1)。並且發現第一階段電壓是影響脈衝位和電漿度最大的參數,然而電漿速度主要取決於電極的長度。此外,使用田口法獲得實驗參數的最佳參數值。
Pulsed Plasma Thruster (PPT) is a type of electric propulsion producing thrust through the acceleration of a self-created plasma thanks to the interaction between a pulsed electric field supplied to the system and a self-induced magnetic field. Due to its simple design, smallness, low cost, and low power consumption, PPT is one of the most promising electric thrusters for missions such as satellites' altitude and motion control. Nowadays, research on PPTs is centred on optimisation in two main ways: the feeding method and the shape of the electrodes.
One of the main issues in pulsed plasma thruster is the Late Time Ablation (LTA). Indeed, only around 40% ~ 60% of the consumed propellant contributes to be accelerated as a plasma. This work, carried out from 2019 to 2021 in ZAP LAB, NCKU, is based on optimising a Dual Stage Pulsed Plasma Thruster (DSPPT), DSPPT being one way to overcome this LTA phenomenon. This optimisation, performed using the Taguchi method, consists of finding out which parameter has the most significant impact on the thruster performance and how to improve it.
Five parameters were investigated under high vacuum condition (10^(-5) Torr): the voltage supplied on the first stage, the voltage supplied on the second stage, the distance between the sets of electrodes, the length of the electrodes, and the frequency of the pulse. Discharge current measurement and triple Langmuir probe are used to estimate the thruster impulse bit, plasma density and plasma velocity. From the sixteen experiments carried out, the maximum value in impulse bit, plasma density, and plasma velocity achieved were respectively: 1.36 μN∙s, 5.88×10^22 m^(-3) and 18 506 m∙s^(-1). It found that the first stage voltage was the parameter impacting the most the impulse bit and plasma density, while the plasma velocity mainly depends on the length of the electrodes. Additionally, the Taguchi method conduct us to obtain the optimal parameter values of the aforesaid experimental parameters.
[1] Villain, J. À la conquête de l'espace: de Spoutnik à l'homme sur Mars: Vuibert; 2007.
[2] Earth Overshoot Day 2020. Earth Overshoot Day.
http://www.overshootday.org/newsroom/press-release-june-2020-english/.
[3] Garner, R. About the Hubble Space Telescope. NASA.
https://www.nasa.gov/mission_pages/hubble/story/index.html.
[4] Murphy, P. BioSentinel, Advanced Exploration Systems Division. NASA.
https://techport.nasa.gov/view/14653.
[5] Domitille, B. Programme Ceres, un nouveau pas dans la détection de signaux electromagnétiques. Ministère des Armées.
https://www.defense.gouv.fr/english/portail-defense/dossiers/archives-des-dossiers/l-espace-au-profit-des-operations-militaires/cooperation-internationale-et-avenir-recherche-et-developpement/developpement-et-programmes-futurs/programme-ceres-un-nouveau-pas-dans-la-detection-de-signaux-electromagnetiques.
[6] London III, J. R., Marley, A. B., Weeks, D. J. Army nanosatellite technology demonstrations for the tactical land warfighter. REDSTONE TEST CENTER REDSTONE ARSENAL AL; 2010.
[7] SpaceX. Starlink.
https://www.starlink.com/.
[8] OneWeb. OneWeb base information.
https://www.oneweb.world/.
[9] LeoSat. LeoSat, a New Satellite Paradigm and Unique Data Network Solution.
https://www.leosat.com/.
[10] Wikipedia Contributors. Kuiper Systems.
https://en.wikipedia.org/wiki/Kuiper_Systems.
[11] Wikipedia Contributors. CubeSat.
https://en.wikipedia.org/wiki/CubeSat.
[12] NASA. Mars InSight Mission Overview.
https://mars.nasa.gov/insight/mission/overview/.
[13] NASA Jet Propulsion Laboratory. Mars Cube One Demo.
https://www.jpl.nasa.gov/news/press_kits/insight/launch/appendix/mars-cube-one/.
[14] Kulu, E. Nanosats Launches. Nanosats Database.
https://www.nanosats.eu/.
[15] Sands, K. Deep Space Validated the Promise of Ion Thrusters. NASA.
https://www.nasa.gov/feature/glenn/2019/deep-space-1-validates-the-promise-of-ion-thrusters.
[16] Lev, D., Myers, R. M., Lemmer, K. M., et al. The technological and commercial expansion of electric propulsion. Acta Astronautica. 2019;159:213-27.
[17] Sanogo, S. Conception optimale de circuits magnétiques dédiés à la propulsion spatiale électrique par des méthodes d'optimisation topologique: Université Paul Sabatier-Toulouse III; 2016.
[18] Bramanti, C., Walker, R., Sutherland, O., et al. The Innovative Dual-Stage 4-Grid Ion Thruster Concept-Theory And Experimental Results. 57th International Astronautical Congress2006. p. C4. .07.
[19] Braeunig, R. A. Basics of space flight: rocket propellants. Basics of Space Flight: Rocket Propellants. 2008.
[20] Zurawski, R. Current evaluation of the tripropellant concept. 22nd Joint Propulsion Conference1986. p. 1698.
[21] Enpulsion. Introduction to the IFM Nano Thruster.
https://www.cubesatshop.com/wp-content/uploads/2017/04/ENP-IFM-Nano-Thruster-Product-Overview.pdf.
[22] Sutton, G. P., Biblarz, O. Rocket propulsion elements: John Wiley & Sons; 2016.
[23] Wikipedia Contributors. Spacecraft propulsion.
https://en.wikipedia.org/wiki/Spacecraft_propulsion.
[24] Lekic, A. Approche macroscopique de la description d'un plasma de décharge. Institut des Sciences Avancées IPSA. Introduction à la physique des plasmas, 2017.
[25] Chang, P.-Y. Plasma Physics Course Note. National Cheng Kung University NCKU, 2019.
[26] Djamal, D., Mohamed, K., Aslan, A. R. RESISTOJET Propulsion System for Small Satellite. 2019 9th International Conference on Recent Advances in Space Technologies (RAST): IEEE; 2019. p. 159-66.
[27] Wallner, L. E., Czika Jr, J. Arc-jet thrustor for space propulsion. NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLEVELAND OH LEWIS RESEARCH CENTER; 1965.
[28] Micci, M., Bilén, S., Clemens, D. History and current status of the microwave electrothermal thruster. Progress in Propulsion Physics. 2009;1:425-38.
[29] Iridium Museum. Iridium: An Overview. Iridium.
https://www.iridiummuseum.com/exhibits/iridium-an-overview/.
[30] Garrigues, L., Coche, P. Electric propulsion: comparisons between different concepts. Plasma Physics and Controlled Fusion. 2011;53:124011.
[31] Kramer, H. Argos: Advanced Research and Global Observation Satellite. EO Sharing Earth Observation Resources.
https://eoportal.org/web/eoportal/satellite-missions/a/argos.
[32] Lee, H.-Y. Indigenous Technology Development of a Prototype Arcjet System: National Cheng Kung University; 2010.
[33] Singh, S. Hall Thruster: An Electric Propulsion through Plasmas. Selected Topics in Plasma Physics: IntechOpen; 2020.
[34] Räisänen, O. A diagram of an electrostatic ion thruster. 2012.
[35] Jahn, R. G., Choueiri, E. Y. Encyclopedia of Physical Science and Technology. Academic Press. 2002;3:125-41.
[36] Shen, M.-H., Fang, H.-K., Chao, Y.-C., et al. Development of a Micro ECR Ion Thruster for Space Propulsion. 2017 35th International Electric Propulsion. 2017.
[37] Jahn, R. G. Physics of electric propulsion: Courier Corporation; 2006.
[38] Chowdhury, S., Kronhaus, I. Characterization of Vacuum Arc Thruster Performance in Weak Magnetic Nozzle. Aerospace. 2020;7:82.
[39] Lev, D. R., Choueiri, E. Y. Scaling of efficiency with applied magnetic field in magnetoplasmadynamic thrusters. Journal of Propulsion and Power. 2012;28:609-16.
[40] Pan, J.-Y., Herdrich, G. Design and demonstration of micro-scale vacuum cathode arc thruster with inductive energy storage circuit. Acta Astronautica. 2020;172:33-46.
[41] Intini Marques, R. A mechanism to accelerate the late ablation in pulsed plasma thrusters: University of Southampton; 2009.
[42] Markusic, T. E., Cassibry, J., Thio, Y. Design of a high-energy, two-stage pulsed plasma thruster: Citeseer; 2002.
[43] Turchi, P. Multi-Stage Plasma Thruster. R AND D ASSOCIATES ALEXANDRIA VA WASHINGTON RESEARCH LAB; 1987.
[44] NASA. Zond 2. NASA.
https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=1964-078C.
[45] Zakrzwski, C., Benson, S., Sanneman, P., et al. On-orbit testing of the EO-1 pulsed plasma thruster. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2002. p. 3973.
[46] Almenar Cerdán, X. Estudio y diseño de un Micro-Pulsed Plasma Thruster para un CubeSat 3U: Universitat Politècnica de València; 2017.
[47] Ciaralli, S. A study of the lifetime of miniaturized ablative pulsed plasma thrusters: University of Southampton; 2014.
[48] Mackowski, A. Gas-Fed Pulsed Plasma Thrusters: Experiment, Diagnosis, and Modeling. 2006.
[49] Kumar, P. Development of Micro-scale Pulsed Plasma Thruster for Cube Satellite: National Cheng Kung University; 2018.
[50] Royer, C. Effect of voltage on second-stage electrodes of dual-stage solid propellant pulsed plasma thruster: National Cheng Kung University 2019.
[51] Lenormand, M. The effect of diverging nozzle addition on the operational reliability of solid propellant micro pulsed plasma thruster: National Cheng Kung University 2019.
[52] Kakami, A., Koizumi, H., Komurasaki, K., et al. Design and performance of liquid propellant pulsed plasma thruster. Vacuum. 2004;73:419-25.
[53] Simon, D., Land, B., Emhoff, J. Experimental evaluation of a micro liquid pulsed plasma thruster concept. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2006. p. 4330.
[54] Ziemer, J. K. Performance scaling of gas-fed pulsed plasma thrusters: Princeton University; 2001.
[55] Mingo Perez, A., Coletti, M., Gabriel, S. A micro PPT for Nano-satellite applications: Design and experimental results. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2012. p. 4279.
[56] Antropov, N., Bogatyy, A., Dyakonov, G., et al. A new stage in the development of ablative pulsed plasma thrusters at the RIAME. Solar System Research. 2012;46:531-41.
[57] Markusic, T. E., Polzin, K. A., Choueiri, E. Y., et al. Ablative Z-pinch pulsed plasma thruster. Journal of Propulsion and Power. 2005;21:392-400.
[58] Keidar, M., Boyd, I., Lepsetz, N., et al. Performance study of the ablative Z-pinch pulsed plasma thruster. 37th Joint Propulsion Conference and Exhibit2001. p. 3898.
[59] Chen, E. Gas-Fed Pulsed Plasma Thrusters: From Spark Plugs to Laser Initiation. 2006.
[60] Wallängen, V. Analytical Modeling of a MicrothrusterSystem for Nanosatellite Applications. 2014.
[61] Schönherr, T., Abe, Y., Okamura, K., et al. Influence of Propellant in the Discharge Process of PPT. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit2012. p. 4278.
[62] Palumbo, D. J., Guman, W. J. Effects of propellant and electrode geometry on pulsed ablative plasma thruster performance. Journal of Spacecraft and Rockets. 1976;13:163-7.
[63] Gessini, P., Habl, L. T., Barcelos Jr, M. N., et al. Low power ablative pulsed plasma thrusters. Proc of the 33rd Int Electric Propulsion Conf(Washington, DC)2013. p. 2013-344.
[64] Huang, T., Wu, Z., Liu, X., et al. Study of breakdown in an ablative pulsed plasma thruster. Physics of Plasmas. 2015;22:103511.
[65] Dorn, K., Hsieh, H.-C., Kuo, T.-C., et al. Effect of Electrode Angle on Pulsed Plasma Thruster Performance. Journal of Aeronautics, Astronautics and Aviation. 2021;53:353-67.
[66] Burton, R. L. Pulsed plasma thrusters. Encyclopedia of Aerospace Engineering. 2010.
[67] Li, H., Wu, Z., Sun, G., et al. A model for macro-performances applied to low power coaxial pulsed plasma thrusters. Acta Astronautica. 2020;170:154-62.
[68] Lobbia, R. B., Beal, B. E. Recommended practice for use of Langmuir probes in electric propulsion testing. Journal of Propulsion and Power. 2017;33:566-81.
[69] Polzin, K. A., Blumhagen, E., Sherrod, A. C., et al. Behavior of triple Langmuir probes in non-equilibrium plasmas. AIAA Propulsion and Energy 2019 Forum2019. p. 3990.
[70] Chen, S. L., Sekiguchi, T. Instantaneous direct‐display system of plasma parameters by means of triple probe. Journal of Applied Physics. 1965;36:2363-75.
[71] Chen, C.-T., Fang, H.-K. Effects of a microwave-induced corona discharge plasma on premixed methane-air flames. Energy. 2019;188:116007.
[72] Taguchi, G., Phadke, M. S. Quality engineering through design optimization. Quality Control, Robust Design, and the Taguchi Method: Springer; 1989. p. 77-96.
[73] White, L. 11. Quality Through Design: Experimental Design, Off‐Line Quality Control, and Taguchi's Contributions. Wiley Online Library; 1996.
[74] Six Sigma. Simplified Approach of Design of Experiment in Taguchi Method, Concepts of DOE and Orthogonal Arrays. Bright Hub Project Management.
https://www.brighthubpm.com/six-sigma/88128-explaining-taguchi-concepts-with-examples/.
[75] Minitab Support. What is the signal-to-noise ratio in a Taguchi design. Minitab.
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/supporting-topics/taguchi-designs/what-is-the-signal-to-noise-ratio/.
[76] Learning about Electronics. Capacitor Charging Graph.
http://www.learningaboutelectronics.com/Articles/Capacitor-charging-graph.html.
[77] Orthogonal Arrays - Best Viewed@720p HD - [Part 4 Of 16].
https://www.youtube.com/watch?v=HUcXjmQ0ZE4.
[78] Minitab Support. Catalogue of Taguchi designs. Minitab.
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/supporting-topics/taguchi-designs/catalogue-of-taguchi-designs/.
[79] Markusic, T., Spores, R., Markusic, T., et al. Spectroscopic emission measurements of a pulsed plasma thruster plume. 33rd Joint Propulsion Conference and Exhibit1997. p. 2924.
[80] Steichen, V. Development of a new pulsed plasma thruster triggered by a cathodic vacuum arc unit: National Cheng Kung University 2020.