| 研究生: |
潘錦昌 Pan, Chin-Chang |
|---|---|
| 論文名稱: |
低溫離子束沈積含氮類鑽碳薄膜之微-奈米機械、材料性質及磨潤性能之研究 Micro/Nano Mechanical, Material Properties and Tribological Performance of a-C:H(N) Thin Films Deposited by Low-Temperature Ion Beam Process |
| 指導教授: |
林仁輝
Lin, Ren-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 250 |
| 中文關鍵詞: | 類鑽碳薄膜 、奈米壓痕試驗 |
| 外文關鍵詞: | diamond-like carbon thin film, nanoindentation |
| 相關次數: | 點閱:57 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的在於探討奈米壓痕試驗進行過程中黏滯效應對壓痕作用力與壓痕曲線圖之影響,建立微/奈米硬度之理論關係式,並配合探討離子束沉積純類鑽碳薄膜(a-C:H)及不同氮氣體積流量比例類鑽碳(a-H(N))薄膜之薄膜結構、微/奈米機械性質機械性質及潤滑性質之影響。奈米硬度常應用在很多微加工力學上,對於材料微變形與應力之計算有很大的影響。因此在薄膜微/奈米機械性質方面,我們藉由奈米壓痕(nanoindentation)試驗機求得薄膜楊氏模數及硬度的方法,並以理論計算得到壓頭與薄膜間的毛細管作用力與凡得瓦作用力,藉以評估黏滯效應對奈米壓痕試驗之影響,並分析得到不同氮氣氣體流量比例對類鑽碳薄膜材料硬度與楊氏模數之影響。在殘留應力方面,利用三維微細形貌量測儀量測鍍膜前後表面形貌數據,以擬合的方式得到鍍膜前後表面之曲面半徑,將所計算得到之曲面半徑代入殘留應力理論以求得薄膜殘留應力,以評估不同氮氣氣體流量比例對類鑽碳薄膜殘留應力之影響。
在摩潤性質量測上,我們主要以掃描探針顯微鏡(SPM)量測薄膜表面之表面形貌,求得不同含氮量類鑽碳薄膜之摩潤性質。並以奈米測試機(Nanotest)以不同的負載與刮痕速度來對所鍍之薄膜進行摩耗試驗,再利用三維微細形貌量測儀量測摩耗體積,藉以評估本實驗鍍膜之抗摩耗性。在薄膜性質的探討方面,我們使用拉曼光譜儀及化學分析電子儀分析薄膜之組成及鍵結,並輔以橢圓偏光儀量測其光學參數,藉分析所鍍薄膜之結構特性與光學性質。
由實驗結果發現黏滯效應在壓痕深度小於 時,對壓痕作用力與壓痕深度圖有極大之影響,而且此現象隨著壓痕深度下降而急劇上升。並同時發現極薄之類鑽碳薄膜( )有相當大之硬度與楊氏模數,而且擁有極佳的抗磨耗性能與表面粗糙度。
本論文最大特色在於(1)在奈米尺度下,考慮凡得瓦力及毛細管作用力對於奈米壓痕試驗之影響,並發現如果不考慮黏滯效應所得之硬度將遠大於薄膜真實硬度﹔(2)以能量的方式求得硬度,並考慮材料彈性回復所產生的彈性功與黏滯效應所產生的黏滯功兩者對硬度之影響。
The adhesion effects to the load-depth curves of nano-indentation test and the theoretical relation of micro/nano hardness are researched in this study. The effect of nitrogen containing and film thickness to the a-C:H and a-H(N) diamond like carbon film structures and micro/nano mechanical and tribological properties is involved, too. The hardness and Young’s modulus are measured by nano-indentation performed by NanoTest, and the capillary attraction and van der Wall force calculated in order to assess the adhesion effect of different nitrogen containing and film thickness. In the residual stresses of films, the profile data are measured before and after coating by 3-D profilemeter and the radius of curvature are calculated by regression; therefore the residual stress can be obtained by the radius of curvature before and after coating according to the stress theory and the effect of the residual stress can be discussed.
In measuring tribological properties, we scanned and scratched sample surfaces by Scanning Probe Microscope and NanoTest with different speeds and loads. In examining samples, we measured composition and bonding by ESCA and Raman spectrum, and measured the optical properties by Ellipsometer.
According to the experimental results, the adhesion effects to the load-depth curves are significant as the indentation depth is lower than 50 nm, and the effect gets larger as depth decreases. And we found that the very thin (about 50 nm) diamond like carbon film has large hardness and Young’s modulus and excellent anti-wear property and surface roughness.
There are two characters in this study: (1) considering the capillary attraction and van der Wall force under nano-scale and observing the fact that the hardness without considering adhesion effect is much larger; (2) Obtaining hardness by the energy method and considering the effects of elastic work due to elastic recovery and adhesion work due to adhesive forces.
1. 宋健民, “鑽石合成,” 全華科技圖書股份有限公司, 民國89年.
2. F.P.Bundy, H.T.Hall, H.M.Strong and R.H.Wentorf, Nature, Vol. 176, 1955, p.51.
3. Z.Ring and T.D.Mantei, J. Vac. Sci. Technol. , Vol. A13, 1995, p.1617.
4. C.R.Eddy, Jr. , D.L.Youchison and B.D.Sartwell, Diamond and Related Materials, Vol. 3, 1993, p.105.
5. M.Ihara, H.Maeno, K.Miyamoto and H.Komiyama, Diamond and Related Materials, Vol. 1, 1992, p.187.
6. S.H.Kim, Y.S.Park and S.K.Jung, J. Vac. Sci. Technol., Vol. A13, 1995, p.1619.
7. C.F.Chen and S.H.Chen, Diamond and Related Materials, Vol. 1994, p.443.
8. A. Grill, “Diamond-Like Carbon: State of the Art,” Diamond and Related Materials, Vol. 8, 1999, pp. 428-434.
9. J.T. Lo and C.H. Yu, “Diamond-Like Carbon Film Deposition and Field Emission Display Investigation,” TATUNG Journal, Vol. 26, 1996, pp. 277-285.
10. C.L. Chen, C.S. Chen and J.T Lue, “Field Emission Characteristic Studies of Chemical Deposited Diamond Films,” Solid-State Electronic, Vol. 44, 2000, pp. 1733-1741.
11. S.E. Huq, P.D. Prewett, J.C. She, S.Z. Deng and N.S. Xu, “Field Emission From Amorphous Diamond Coated Silicon Tips,” Materials Science and Engineering B, Vol. 74, 2000, pp. 184-187.
12. R. Wächter, A. Cordery, S. Proffitt and J.S. Foord, “Influence of Film Deposition Parameters on the Field Emission Properties of Diamond-Like Carbon Films,” Diamond and Related Materials, Vol. 7, 1998, pp. 687-691.
13. 張瑞發 , 化工資訊, Vol. 4, 1993, p.68.
14. Grill, IBM J. Res. Develop. , Vol. 43, 1999, p.147.
15. A.Y. Liu and M.L.Cohen, Science, Vol. 245, 1989, p.841.
16. J.J.Cuomo , P.A. Leary , D.Yu , W. Reuter and M.Frish, Journal of Vacuum Science Technology, Vo. 16, 1979, p.299.
17. H.X.Han and B.J.Feldman, Solid State Communication, Vol. 65, 1988, p.921.
18. N.Nakayama, Y.Tsuchiya, S.Tamada, K.Kosuge, S.Nagata, K.Takahiro, and S. Yamaguchi, Jananese Journal of Applied Physics, Vol. 32, 1993, p. L1465.
19. X.Z.Ding, F.M.Zhang and X.H.Liu et al, Thin Solid Films, Vol. 346, 1992, p.82.
20. H.F.Cheng, F.Y. Chuang, C.Y.Sun, C.T.Tseng and I.N.Lin, Diamond and Related Materials, Vol. 7, 1998, p.711.
21. T.Michler, M.Grischke, I.Traus, K.Bewilogua and H.Dimigen, Diamond and Related Materials, Vol. 7, 1998, p.1333.
22. S.R.P.Silva, G.A.J.Amaratunga, Rusli, S.Haq and E.K.Salje, Thin Solid Films, Vol. 253, 1994, p.20.
23. D.Neerinck, P.Persoone, M.Sercu, A.Goal, D.Kester and D.Bray, Diamond and Related Materials, Vol. 7, 1998, p.468.
24. C.Venkatraman, A.Goel, R.Lei, D.Kester and C.Outten, Thin Solid Films, Vol. 308-309,1997, p.173.
25. D.Neerinck, P.Persoone, M. Sercu, A.Goel, C.Venkatraman, D.Kester, C.Halter, P.Swab and D.Bray, “Diamond-Like Nanocomposite Coating for Low-Wear and Low-Friction Applications in Humid Environments,” Thin Solid Films, Vol. 317, 1998, pp. 402-404.
26. X.D.Pan and D.J.Fabian , Surf. Coat. Technol. Vol. 47, 1991, p.173.
27. K.W.Whang and H.S.Tae , Thin Solid Films, Vol. 204, 1991, p.47.
28. A.Grill and V.Patel, “Effects of Bias and Inert Gas on Properties of Diamond-Like Carbon Deposited by D.C. PACVD,” Diamond and Related Materials, Vol. 4, 1994, pp. 62-68.
29. H.Inaba et al, J. Appl. Phys., Vol. 42, 1971, p.2953.
30. A.Singh and P. Lavigne , Surf. Coat. Technol. Vol. 47, 1991, p.188.
31. E.Mounier, P.Juliet, E.Quesnel and Y.Pauleau, Surf. Coat. Technol. Vol. 76, 1995, p.548.
32. J.Ullmann, S.Schulze, J.Erben, W.Grunewald, D.Heger and I.Muhling , Thin Solid Films, Vol. 219, 1992, p.109.
33. J.Ullmann, S.Schmidt and W.Scharff, Thin Solid Films, Vol. 214, 1992, p.35.
34. N.Savvides, J. Appl. Phys., Vol. 59, 1986, p.4133.
35. A.Vanhulsed et al, Diamond and Related Materials, Vol. 8, 1999, p.1193.
36. C.T.Lin, F.Li and T.D.Mantel, J. Vac. Sci. Technol, Vol. A17, No. 3, 1979, p.735.
37. X.A.Zhao, C.W.Ong, Y.C.Tsang, Y.W.Wong, P.W.Chan and C.L.Choy, Apply Physics Letter, Vol.66, No.20, 1995, p.2652.
38. F.Demichelis, X.F.Rong, S.Schreiter, A.Tagliaferro and C.D.Martino, “Deposition and Characterization of Amorphous Carbon Nitride Thin Films,” Diamond and Related Materials, Vol. 4, 1995, pp. 361-365.
39. M.Diani, A.Mansour, L.Kubler, J.L.Bischoff and D.Bolmont, Diamond and Related Materials, Vol. 3, 1994, p.264.
40. K.Ogata, J.Chubaci, D.Fernando and F.Fujimoto, Journal of Applied Physics, Vol. 76, No. 6, 1994, p.3791.
41. M.Y.Chen and X.Lin, Tribology Transection, Vol. 36, No.3, 1993, p.491.
42. J.Koskinen, J.P.Hirvonen, J.Levoska and P.Torri, “Tribological Characterization of Carbon-Nitrogen Coatings Deposited by Using Vacuum Arc Discharge,” Diamond and Related Materials, Vol. 5, 1996, pp. 669-673.
43. S.Kumar and T.L.Tansley, “Structure Studies of Reactively Sputtered Carbon Nitride Thin Films,” Thin Solid Films, Vol. 256, 1995, pp. 44-47.
44. X.Wang, P.J.Martin and T.J.Kinder, “Optical and Mechanical Properties of Carbon Nitride Films Prepared by Ion-Assisted Arc Depositon and Magnetron Sputtering,” Thin Solid Films, Vol. 256, 1995, pp.148-154.
45. D.Li, E.Cutiongco, Y.W.Chung, M.S.Wong and W.D.Sproul, “Composition, Structure and Tribological Properties of Amorphous Carbon Nitride Coatings,” Surf. Coat. Tech. Vol. 68/69, 1994, pp. 611-615.
46. M.G.Krishna, K.R.Gunasekhar and S.Mohan, Journal of Material Research, Vol.10, No.5, 1995, p.1083.
47. J.Narayan, J.Reddy, N.Biunno, S.M.Kanetkar, P.Tiwari and N.Parikh, Materials Science and Engineering, Vol. B26, 1994, p.49.
48. M.Y.Chen, Journal of Vacuum Science Technology A, Vol.11, No.3, 1993, p.521.
49. J.Robertson, “Properties of Diamond-Like Carbon,” Surf. Coat. Technol., Vol. 50, 1992, pp. 185-203.
50. A.Grill, “Review of the Tribology of Diamond-Like Carbon,” Wear, Vol. 168, 1993, pp.143-153.
51. C.Y.Hsu, L.Y.Chen and F.C.N.Hong , Diamond and Related Materials, in press.
52. J.J.Cuomo, D.L.Pappas, J.Bruley, J.P.Doyle and K.L.Saenger, “Vapor Deposition Processes for Amorphous Carbon Films With sp3 Fractions Approaching Diamond,” J. Appl. Phys. Vol. 70, No. 3, 1991, pp. 1706-1711.
53. A. Grill and V.Patel , Diamond and Related Materials, Vol. 2, 1993, p.597.
54. S.S.Camargo, A.L.Baia Neto, R.A.Santos, F.L.Freire, R.Carius and F.Finger, “Improved High-Temperature Stability of Si Incorporated a-C:H Films,” Diamond and Related Materials, Vol. 7, 1998, pp. 1155-1162.
55. D.R.Tallant, J.E.Parmeter, M.P.Siegal and R.L.Sompson, “The Thermal Stability of Diamond-Like Carbon,” Diamond and Related Materials, Vol. 4, 1995, pp. 191-199.
56. G.R.Rao, E.H.Lee, R.Bhattacharya and A.W.McCormick, J. Mater. Res., Vol. 10, No. 1, 1995, p.190.
57. A.C. Fischer-Cripps, “A review of analysis method for sub-micron indentaion testing,” Vacuum, Vol. 58, 2000, pp. 569-585.
58. W.C. Oliver, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., Vol. 7, No. 6, 1992, pp. 1564-1583.
59. J.S. Field, M.V. Swain, “A Simple Predictive Model for Spherical Indentation,” J. Mater. Res., Vol.8, No. 2, 1993, pp.297-306.
60. R.B. King, “Elastic Analysis of Some Punch Problems for A layered Medium,” Int. J. Solids Structure, Vol. 23, No. 12, 1987, pp. 1657-1664.
61. R.W. Armstrong and W.H. Robinson, New Zealand J. Sci. Vol. 17, 1974, pp. 429-431.
62. D. Newey, M.A. Wilkins and H.M. Pollock, J. Phys. E. Sci. Instrum. Vol. 15, 1982, pp.119-125.
63. J.B. Pethica, R. Hutchings and W.C. Oliver, Phil. Mag. A, Vol. 48, 1983, pp.593-.
64. R.W. Armstrong, H. Shin and A.W. Ruff, “Elastic/Plastic Effects During Very Low-Load Hardness Testing of Copper,” Acta Metall. Mater. Vol. 43, No. 3, 1995, pp. 1037-1043.
65. T.Y. Tsui, W.C. Oliver and G.M. Pharr, J. Mater. Res., Vol. 11, 1996, pp. 752-
66. Bolshakov, W.C. Oliver and G.M. Pharr, J. Mater. Res., Vol. 11, 1996, pp. 760-.
67. S. Suresh and A.E. Giannakopoulos, Acta mater., Vol. 46, 1998, pp. 5755
68. S. Carlsson and P.L. Larsson, “On the Determination of Residual Stress and Strain Field by Sharp Indentation Testing. Part I: Theoretical and numerical Analysis,” Acta mater. Vol. 49, 2001, pp. 2179-2191.
69. K.L. Johnson, K. Kendall and A.D. Roberts, “Surface Energy and the Contact of Elastic Solids,” Proc. R. Soc. Lond., Vol. 324, 1971, pp. 301-313.
70. H. Hertz, Miscellaneous Papers, 1896, p.146, London: Macmillan.
71. B. Dahneke, “The Influence of Flattening on the Adhesion of Particle,” Journal of Colloid and Interface science, Vol. 40, No. 1, 1972, pp. 1-13.
72. B.V. Derjaguin, V.M. Muller and YU. P. Toporov, “Effect of Contact Deformation on the Adhesion of Particle,” Journal of Colloid and Interface Science, Vol. 53, No. 2, 1975, pp. 314-326.
73. R.G. Horn, J.N. Israelachvili and F. Pribac, “Measurement of the Deformation and Adhesion of Solids in Contact,” Journal of Colloid and Interface Science, Vol. 115, No. 2, 1987, pp. 480-492.
74. J.A. Emerson, R.K. Giunta, G.V. Miller, C.R. Sorensen and R.A. Pearson, “The Effect of Surface Contamination on Adhesive Forces as Measured by Contact Mechanics,” Mat. Res. Soc. Symp., Vol. 629, 2000, pp. FF8.7.1-FF8.7.6.
75. K.T. Wan, D.T. Smith and B.R. Lawn, “Fracture and Contact Adhesion Energies of Mica-Mica, Silica-Silica, and Mica-Silica Interfaces in Dry and Moist Atmospheres,” J. Am. Ceram. Soc., Vol. 75, No. 3, 1992, pp. 667-676.
76. K. Komovopoulos and W. Yan, “A Fractal Analysis of Stiction in Microelectromechanical Systems,” Journal of Tribology, Vol. 119, 1997, pp. 391-400.
77. K. Komovopoulos , “Surface Engineering and Microtribology for Microelectromechanical Systems,” Wear, Vol. 200, 1996, pp. 305-327.
78. A.G.Khurshudov and K.Kato, “Tribological Properties of Carbon Nitride Overcoat for Thin-Film Magnetic Rigid Disks,” Surf. Coat. Technol. Vol. 86/87, 1996, pp. 664-671.
79. D.Li and Y.W.Wong , Tribology Transections , 37 (1994) , p.479.
80. J.Narayan , J.Reddy , N.Biunno , S.M.Kanetkar , P.Tiwari and N.Parikh , Materials Science and Engineering , B26 (1994) , p.49.
81. H.Q.Lou , N.Axen , R.E.Somekh and I.M.Hutchings, “Mechanical Properties of Amorphous Carbon Nitride Films,” Diamond and Related Materials, Vol. 5, 1996, pp. 1303-1307.
82. Milton Ohring, The Material Science of Thin Film, Academic Press, Inc, 1992.
83. Y.C. Tsui and T.W. Clyne, “An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings,” Thin Solid Films, Vol. 306, 1997, pp.23-33.
84. W.D.Kingery, H.K.Bowen and D.R.Uhlmann, Introduction to Ceramics, John Wiley & Sons , Canada , 1991.
85. 余樹貞, 晶體之結構與性質, 渤海堂文化公司, 1993.
86. 張瑞發, 化工資訊, Vol. 4, 1993, p.68.
87. J.C.Angus and C.C.Hayman, Science, Vol. 241, 1998, p.913.
88. F.M. Orr, L.E. Scriven and A.P. Rivas, “Pendular Rings Between Solids: Meniscus Properties and Capillary Force,” Journal of Fluid Mechanics, Vol. 67, 1975, pp. 723-742
89. J.Robertson, Diamond and Related Materials, Vol. 3, 1994, p.361.
90. T.Tagkagi, J. Vac. Sci. Technol., Vol. A2, 1984, p.382.
91. 艾啟峰,真空科技,Vol. 3, 1992, p.10.
92. 曾煥華,電漿的世界,第一章,銀禾文化事業有限公司,台北台灣,(1987).
93. Brian Chapman, Glow Discharge Process, John Wiley & Sons, Inc, United State of America, 1980, Chapter 5.
94. J. R. Roth, Industrial Plasma Engineering-Volume 1: Principles, Institute of Physics Publishing, London , 1995 .
95. H.R.Kaufman , J. Vac. Sci. Technol. A4[3] (1986) , p.764.
96. 線性離子源使用說明書.
97. 陳俊龍, 工業材料, 106期, p.69.
98. 陳力俊, 材料電子顯微鏡學, 國科會精密儀器發展中心
99. KYKY-1000B型掃描式電子顯微鏡操作手冊, p.16.
100. Bernhard Schrader, Infrared and Raman Spectroscopy, p.19.
101. 李金宏,”橢圓偏光儀之簡介及應用”,光電與真空,第17期,民國81年9月,pp.5-16.
102. 朱正煒、李正中,”相位偏移式橢圓儀”,光學工程,第55期,民國85年9月,pp.5-12.
103. P.H.Lissberger, “Optical Application of Dielectric Thin Films,” Rep. Prog. Phys., 33 (1970) , pp.197-268.
104. F.Tuinstra and J.L.Koenig, J. Chem.Phys., Vol. 53, No. 3, 1970, p.1126.
105. M.K.Fung, W.C.Chan, Z.Q.Gao, I Bello , C.S. Lee and S.T.Lee, “Effect of Nitrogen Incorporation into Diamond-Like Carbon Films by ECR-CVD,” Diamond and Related Materials, Vol. 8, 1999, pp. 472~476.
106. J.Schwan, S.Ulrich, V.Batori, H.Ehrhardt and S.R.P.Silva, J. Appl. Phys., Vol. 80, No. 1, 1996, p.440.
107. M.J.Peterson , “Energy Dependent Structure Changes in Ion Beam Deposited a-C:H”, Diamond. Relat. Mater. , Vol 5, 1996, pp.1407-1413.
108. J.Shiao and R.W.Hoffman, “Studies of Diamond-Like and Nitogen-Containing Diamind-Like Carbon Using Laser Raman Spectroscopy,” Thin Solid Films, Vol. 283, 1996, pp.145-150.
109. J.F.Moulder, W.F.Stickle , P.E.Sobol and K.D.Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Eden Prairie, 1992.
110. R.Hauert , A.Glisenti and S.Metin, “Influence of Nitrogen Doping on Different Properties of a-C:H,” Thin Solid Films, Vol. 268, 1995, pp. 22-29.
111. W.Buckel, J. Vac. Sci. Tech. 6 (1969) , p.606.
112. 黃承揚,薄膜應力及其微觀結構分析,國立中央大學光電所,碩士論文,(1999)
113. C.V.Thompson and R.Carel, J. Mech. Phys, Solids, Vol.44, No.55 1996, p.657.
114. I.N. Sneddon, Int. J. Engng Sci., Vol. 3 (1965), pp. 47.
115. Gordon Davies, “Properties and Growth of Diamond,” INSPEC, the Institution of Electrical Engineers, London, United Kindom. (1994).
116. G.M. Pharr, W.C. Oliver and F.R. Brotzen, “On the Generality of the Relationship Among Contact Stiffness, Contact Area, and Elastic Modulus During Indentation,” J. Mater. Res., Vol. 7, 1992, pp. 613-617.
117. R.B. King, “Elastic Analysis of Some Punch Problems for A layered Medium,” Int. J. Solids Structure, Vol. 23, No. 12, 1987, pp. 1657-1664.
118. M. Sakai, “Energy Principle of the Indentation-Induced Inelastic Surface Deformation and Hardness of Brittle Material,” Acta metal. Mater., Vol. 41, No. 6, 1993, pp. 1751-1758.
119. A.E.H. Love, Q.F. Math., Vol. 10, 1939, pp. 161.
120. A.W. Adamson, Physical Chemistry of Surface, Wiley, New York and London. 1982.
121. F. London, Z. Phys. Chem. B11, 1930, pp. 222.
122. K. Komvopoulos and W. Yan, “A Fractal Analysis of Stiction in Microelectromechanical Systems,” Journal of Tribology, Vol. 119, 1997, pp. 391-400.
123. J. Visser, Surf. Colloid Sci. Vol. 8, 1976, pp. 3-79.
124. M.S. Paterson and K.R.S.S. Kekulawala, Bull. Mineral. Vol. 102, 1979, pp. 92-98.
125. J.N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, 1992.
126. F. Dubourg and J.P. Aimé, “Role of the Adhesion Between a Nanotip and a Soft Material in Tapping Mode AFM,” Surface Science, Vol. 466, 2000, pp. 137-143.
127. A.R. Von Hippel, Dielectric Materials and Applications, Wiley, New York, 1958.
128. R.S. Bradley, Phil. Mag. Vol. 13, 1932, pp. 853.
129. R.S. Bradley, Trans. Faraday Soc. Vol. 32, 1936, pp. 1088.
130. H.C. Hamaker, Physical, Vol. 4, 1937, pp. 1058.
131. N. Sasaki and Tsukada, Appl. Surf. Sci., Vol. 140, 1999, pp. 339.
132. L. Nony, R. Boisgard and J.P. Aimé, J. Chem. Phys., Vol. 111, 1999,