簡易檢索 / 詳目顯示

研究生: 孫瑞遠
Sun, Jui-Yuan
論文名稱: 蜂巢式氧化銅觸媒對氮氧化物還原反應之研究
The reduction of NOx on CuO catalyst
指導教授: 袁曉峰
Yuan, Tony
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 70
中文關鍵詞: 還原反應蜂巢式氧化銅觸氮氧化物
外文關鍵詞: CuO catalysts, NOx, NO conversion
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來工業發展造成環境的污染,其中氮氧化物是直接對生態環境影響的重要污染物之一,如何降低氮氧化物的排放是目前重要的課題。本論文實驗觀察氧化銅(CuO)觸媒對一氧化氮(NO)的轉換效能,瞭解氧化銅觸媒使用在工業及日常生活的廢氣處理上可行性。
    實驗利用氧化銅觸媒處理模擬燃燒產生的氮氧化物,觀察氧化銅觸媒對氮氧化物的轉換效能。實驗使用的觸媒是將氧化銅鍍附於圓柱狀蜂巢式的多孔性材質之載體表面,每「單位」載體重21克、直徑5.0公分、厚度1.3公分、孔隙數為100孔/in2(孔徑為2mm*2mm)、穿透率為61%、單位表面積為4.85*10-3 m2g-1,而觸媒的氧化銅含量為7.5wt%。
    實驗為了模擬廢氣排放的情況,溫度範圍控制在250℃至600℃;廢氣通過觸媒孔道的流速控制在約45cm/s、50cm/s、60cm/s三種流速,並且改變觸媒數量由一「單位」至七「單位」,觀察觸媒數量對轉換效能的影響。實驗並改變一氧化氮濃度(450ppm~1250ppm)以觀察觸媒轉換效能的極限。實驗結果如下:
    1. 使用一單位的氧化銅觸媒NO的轉換率可達12%~13%;連續堆疊五單位觸媒時,轉換率僅能提升至20%,而在單位觸媒之間增設氣體混合裝置時,三單位觸媒之轉換率即可達30%,顯示蜂巢式觸媒之轉換效能嚴重的受到質傳限制。
    2. 當流速加快時,導致氣體停滯在觸媒表面的時間變短,必須提高溫度才可達到反應條件,因此也導致起始反應溫度提高及最佳溫度範圍減小的影響。而在實驗流速45cm/s~60cm/s時,最佳轉換溫度區間為480℃~580℃之間。
    3. NO濃度增加時,轉換率並未明顯改變,亦顯示本研究使用之氧化銅觸媒未達到轉換NO的極限。
    本研究顯示,在適當的選擇觸媒載體以降低質傳限制的條件下,CuO對NO之轉換效能可經由增加觸媒量、溫度及流速的控制以提高轉換效能,配合應用在工業廢氣的NO處理,CuO為具相當潛力的觸媒。

    In recent years, the development of industry has been resulted in the pollution of environment, where NO emission has effects on visibility, acid rain, and ozone layer, is considered to be one of the most important pollutants to control. Therefore, this thesis research examined the possibility of utilizing low-cost CuO catalyst to reduce NO emission in combustion exhaust gas and the controlling factors on NO conversion were experimentally investigated.
    CuO was wash-coated on cylindrical honeycomb substrate. Each unit of catalyst was 21g by weight. The dimension of the cylindrical unit was 5cm1.3cm and the density of channels (2mm*2mm) of the honey-cone was 100/in2. The honeycomb had a cross section opening of 61%. The total surface area of each unit of catalyst was 4.85*10-3 m2g-1 and CuO content was 7.5wt%.
    The experiments were controlled at temperatures 250℃ to 600℃ and the gas velocity of 45cm/s to 60cm/s to simulate the exhaust of conventional boilers. The amount of catalyst was also varied from 1 to 7 units. In order to probe the limits of the catalytic conversion, the NO concentration were changed from 450ppm to 1250ppm. The results are as follows:
    1. With 1 unit of CuO catalyst, the conversion of NO was 12% to 13%. When increase to 5 units of CuO catalyst, the conversion of NO raised, not linearly however, to 20%. Modifying the system by adding mixing mechanism between catalytic units, the conversion of NO increased to 30% with 3 units of catalyst. This illustrated that the conversion of NO on honeycomb CuO catalyst was mass transfer (diffusion) controlled.
    2. Since the residence time of the flow gas in catalytic bed decreased as the flow velocity increased, both the ignition temperatures and the best operation temperatures increased with the flow velocities. Narrower operation temperature ranges were also observed as the flow velocity increased. The best operation temperatures were between 480℃to 580℃, and the velocity is between 45cm/s~60cm/s.
    3. As the concentration of NO increased, the percentage conversion of NO was almost invariant. This showed that the catalyst in use had not reached its capability limit chemically.
    With adequately arrange of catalyst to eliminate mass transfer limitation, this study showed that the conversion of NO on CuO catalyst can be increased to meet the industry’s demand by suitable controlling of gas flow velocity and reaction temperature, and by adding more catalyst. Although the performance of CuO may not as good as precious metals, the low-cost nature makes CuO a potential competitor to the precious metals used in the conventional catalytic converters.

    中文摘要 .................................................I 英文摘要 ................................................II 誌謝................................................... IV 目錄................................................... V 表 目 錄 ..............................................VII 圖 目 錄 ..............................................VIII 第一章 導論...............................................1 1-1研究起源.............................................1 1-2氮氧化物的介紹與形成.................................2 1-3污染物的控制技術.....................................4 1-4研究目的.............................................6 第二章文獻回顧............................................7 2-1觸媒的種類與差異.....................................7 2-2操作溫度的影響.......................................8 2-3活性基的附載量......................................9 2-4系統的含氧量........................................10 2-5使用還原劑的種類與一氧化氮反應......................11 2-6結論................................................11 第三章理論分析與原理.....................................13 3-1觸媒催化反應........................................13 3-2選擇性及非選擇性觸媒還原法的原理介紹與差異..........15 第四章實驗設備與步驟.....................................17 4-1氧化銅觸媒的準備與分析..............................17 4-2模擬廢棄排放之實驗設備及實驗方式....................18 4-2-1流量控制........................................18 4-2-2燃燒室機構......................................18 4-2-3溫度控制........................................20 4-3實驗步驟............................................20 第五章實驗結果與討論.....................................22 5-1觸媒化學反應的分析與推測............................22 5-2實驗結果分析與討論..................................22 5-3結論................................................30 參考文獻 ................................................34 表...................................................39 圖 ................................................51 自述................................................70

    【1】行政院環保署全球之訊網http://www.epa.gov.tw
    【2】Ron Heck, Robert Farrauto, “Automotive catalysts” Automotive engineering , P.93~96, February 1996
    【3】王奕凱、邱宗明,李秉傑, “非均勻係催化原理與應用”,渤海堂文化公司,1993
    【4】M Iwamoto, H Yahiro , Y Mine , “Excessively copper ion- exchanged ZSM-5 zeolilites as highly active catalysts for direct decomposition of nitrogen monoxide”, Chemistry Letters,Vol:18 ,No.2, P.213~216
    【5】D. Stoyanova,M. Christiva, P. Dimitrova,J. marinova, N. Kasabova,D. Panayotov, “Copper-cobalr oxide spinel supported on high-temperature aluminosilicate carriers as catalyst for CO-O2 and CO-NO reaction”, Applied caralysts B : Environmental,Vol:17, P233~244,1998
    【6】Qingya Liu, Zhenyu Liu, Guoyong Xie and Zhanggen Huang “Effect of SO2 on a cordierte honeycomb supported CuO catalyst for NO reduction by NH3”,Catalysis Letter, Vol;101,NO.1-2,P.27~30,2005
    【7】蔣曉原、丁光輝、劉琪、樓莉萍、陳英馗、鄭小銘, “CuO在CeO2和γ-Al2O3上的表面性質及對NO+CO反應性能的研究”,Journal of Zhejiang University, Vol:30, No.3, 2003
    【8】Liwei Huang, Takaaki Hari, Katsuhiko Nakajyo, Shoji Ozawa and Hitoki Matsuda, “Reduction of No by Co in a Pulsed Corona Reactor Incorporated with CuO Catalyst”, Journal of Chemical Engieering of Japan , Vol:34, NO.8, P.1012~1016,2001
    【9】李公哲譯“環境工程”,1998
    【10】鄭兆凱,“雷射激發螢光技術在高壓甲烷預混火焰中NO定量量測”,國立成功大學博士論文,1997。
    【11】Ting-Nien Wu, Shuhn-Shyurng Hou, “Reduction of NOx emission from an oil-fired boiler via combustion tuning technology”, 崑山科技大學學報第一卷第一期,2000
    【12】Hui-Juan Zhang,Shi-En Hui,Qu-Lan Zhou“A Cold Model Aerodynamical Test of Air-Staged Combustion in a Tangential Firing Utility Boiler”, International Journal of Plant Engineering and Management,Vol:12,No.1,P.36~41,2007
    【13】柯逸宗“抽汽冷凝式汽電共生系統之熱效率分析及節能評估”,國立中山大學碩士論文,2004
    【14】中國技術服務社,”氮氧化物控制技術講習會”,IPC-TT06,1997
    【15】張君正、張木彬,”氮氧化物生成機制與控制技術之探討”,工業污染防治,第50期,P.19-35,1994.
    【16】Cooper,C.D., Alley, F.C.,”Air Pollution Control,A Design
    Approach”,Waveland Press Inc.,Illionis,1986.
    【17】Sada,E. , H. Kumazawa, I. Kudo and T. Kondo, “Absorption of NO in Aqueous Mixed Soltions of NaCLO2 and NaOH”,Chemical Engineering Sicene , Vol:33,P.315~318,1978
    【18】Chang, S.G.,Littlejohn, D. and Lynn, S. ,“Effects of Metal Chelats of Wet Flue Gas Scrubbing Chemistry”, Environmental Science and Technology, Vol:17 , P.649~653,1983
    【19】朱信、簡聰文,“煙道氣濕式除硫除氮整合性統之研究”第十屆空氣污染控制技術研討會論文集,1993
    【20】Kenneth Wark Jr.,Cecil F. Warner and Wayne T. Davis ,“Air pollution its origin and control”,ADDISON-WESLEY,P.463,1998
    【21】D. Pietrogiacomi , D.Sannino , S.Tuti , P. Ciambelli , V. Idovina, M. Occhiuzzi , F. Pepe, “The catalytic activity of CuOx/ZrO2 for the abatement of NO with propene or ammonia in the presence of O2” , Applied caralysts B : Environmental , Vol:21, P.141~150,1999
    【22】Hsisheng Teng, Yung-Fu Hsu, Ying-Tsung Tu, “Reduction of NO with NH3 over carbon catalysts – the influence of carbon surface structures and the global kinetics”,Vol:20,P.145~154,1999
    【23】K. I. Shimizu, H. Maeshima , A. Satsuma, T. Hattori, , “Transition metal –aluminate catalysts for NO reduction by C3H6”, Applied caralysts B : Environmental , Vol:18, P.163-170,1998
    【24】張慶章“溫度效應對一氧化氮在銅/煙道碳觸媒上反應行為之討論”,國立中山大學化學研究所論文,1996
    【25】盧倉裕“以觸媒氧化法處理含揮發性有機物煙道氣之研究” 國立中山大學環境工程研究所 碩士論文,1999
    【26】R. Burch “Low NOx options in catalytic combustion and emission control”, catalysis today ,Vol:35,P.27~36,1997
    【27】Laurent Piccolo, Claude R. Henry, “Reactivity of metal nanoclusters : nitric oxide adsorption and CO+NO reaction on Pd/Mgo model catalysts”, Applied Surface Science,Vol:162-163, P.670~678,2000
    【28】Ron Heck, Robert Farrauto “Catalytic Air Pollution Control-Commercial Technology”,Van Nostrand Rainhold , New York , U.S.A,1995
    【29】Hideaki Hamada, “Cooperation of catalytic species for the selective reduction of nitrogen monoxide with Hydrocarbons”, Catalysis Surveys from Japan, Vol:1,P.53~60,1997
    【30】J.Xiaoyuan,L.Liping,C.yingxu,Z.Xiaoming, “Effects of CuO/CeO2 and CuO/γ-Al2O3 catalysts on NO+CO reaction”,Journal of Molecule Catalysts A : Chemical ,Vol:197,P193~205,2003
    【31】Simona Bennici, Antonella Gervasini, vittorio Ragaini, “Preparation of dispersed CuO catalysts on oxide supports for de-NOx reaction”, Ultrasionics Sonochemistry,Vol:10, P.61~64,2003
    【32】F.Boccuzzi ,A.Chiorno ,M.Gargano and N.Ravasio “Prepartion , Characterization , and Activity of Cu/TiO2 catalytic ”,Journal of Catalysis , Vol: 165,P140~149,1997
    【33】A. Corma , E. Palomares “Selective catalytic reduction of NOx on Cu-beta zeolites ”, Applied Catalysis B, Vol:11, P.233~242 , 1997
    【34】賈彥榮、蔣曉原、鄭小明, “CuO/Sn0.8Ti0.2O2催化劑的表徵及對NO+CO反應活性研究”,Chinese Journal of Inorganic Chemistry, Vol:22, NO.3, P.525~532, 2006
    【35】劉鎧仲, “以觸媒還原一氧化氮之研究:氧濃度及促進劑對同觸媒之影響”,國立中山大學環境工程研究所碩士論文,2001
    【36】Kenji Nakao,Shin Ito, Keiichi Tomishige,Kimio Kunimori, “Vibrationally excited CO2 formed in CO+NO reaction on Pd(110) surface in high surface temperature range”, Catalysis Letters, Vol:103,P.179~184,2005
    【37】胡興, “觸媒原理與應用”,高立圖書有限公司,1991
    【38】H. S. Fogler, “Elements of Chemical Reaction Engineering”,3rd ed., Prentice-Hall Inc., New Jersey, USA., 1999
    【39】A.n. Pisanu, C.E. Gigola,“NO decomposition and NO reduction by CO over Pd/α-Al2O3”, Applied Catalysis B: Environment, Vol:20, P.179~189,1999
    【40】Vincenzo Tufano and maria Turco, “Konetic Model of Nitric Oxide Reduction over a High-surface Area V2O5-TiO2 Catalyst”, Applied Catalysis B:Environment, Vol.2, p.9-26, 1993.
    【41】W. C. pfefferle , L. D. Pfefferle, “CATAYTICALLY STABILIZED COMBUSTION”, Combust. Sci. ,Vol:12 , P.35~41,1986
    【42】V. Cominos , V. Hessel , C. Hofmann , G. Kolb , R. Zapf ,A. Ziogas , E.R. Delsman , J.C. Schouten , “Selective oxidation of carbon monoxide in a hydrogen-rich fuel cell feed using a catalyst coated microstructured reactor”, Catalysis Today ,Vol:110 ,P.140–153 ,2005

    下載圖示 校內:立即公開
    校外:2007-08-28公開
    QR CODE