簡易檢索 / 詳目顯示

研究生: 陳彥志
Chen, Yan-Zhi
論文名稱: 應用Budyko架構探討台灣南部集水區水文循環變化
Application of Budyko Framework on the Change of Hydrologic Cycle in Southern Taiwan Catchments
指導教授: 陳憲宗
Chen, Shien-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 122
中文關鍵詞: 水平衡水文循環Budyko架構台灣南部
外文關鍵詞: water balance, hydrological cycle, Budyko framework, southern Taiwan
相關次數: 點閱:96下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用Budyko架構探討台灣南部集水區水文循環變化,研究區域為曾文水庫、南化水庫、牡丹水庫及甲仙攔河堰集水區。本研究使用臺灣氣候變遷推估資訊與調適知識平台TCCIP計畫的歷史網格資料及氣候變遷統計降尺度資料,得到歷年與未來各情境之溫度及降雨量;歷年逕流量來自水庫與堰之進水量資料;歷年潛勢蒸發散與實際蒸發散則來自GLEAM模式提供之估計值。為了計算各研究區域之水文因子,本研究以Budyko模式為架構,使用歷年降雨、潛勢蒸發散及實際蒸發散資料,建立代表各集水區的Budyko方程式,得到各集水區年降雨量、年逕流量及年蒸發散的水文循環關係。針對未來氣候變遷情境下的水文循環變化,本研究計算未來情境下的乾燥係數(年潛勢蒸發散量除以年雨量),再代入各集水區的Budyko方程式,得到蒸發散指數(年蒸發散量除以年雨量),即可進一步推求氣候變遷情境下的實際蒸發散與逕流量。本研究分析歷史與未來情境下各水文因子(溫度、降雨、逕流、潛勢蒸發散、實際蒸發散)的差異。在氣候變遷的假設情境下,使用本研究方法與歷史觀測平均值比較後,得到以下結果:曾文水庫集水區降雨稍微增加4.6%、蒸發散增加21.8%、逕流稍微增加3.9%;南化水庫集水區降雨稍微增加1.3%、蒸發散增加12.5%、逕流稍微增加4.1%;牡丹水庫集水區降雨減少15.1%、蒸發散稍微增加0.7%、逕流減少26.2%;甲仙攔河堰集水區降雨減少6.7%、蒸發散減少7.7%、逕流稍微增加1.6%。研究結果顯示在未來情境下,曾文及南化集水區降雨增加,牡丹及甲仙集水區降雨減少;曾文、南化及甲仙集水區之蒸發散與逕流增加,而牡丹集水區之蒸發散與逕流減少。

    This study used the Budyko framework to explore the hydrological cycle changes in southern Taiwan, and analyzed the changes in hydrological factors under climate change. Based on the Budyko model, this study used the historical rainfall data and potential and actual evapotranspiration estimates to establish the Budyko equation that represents the annual rainfall, runoff and evapotranspiration relationship with respect to each catchment. The study areas are catchments of Zengwen Reservoir, Nanhua Reservoir, Mudan Reservoir, and Jiaxian River Dam in southern Taiwan. The conclusions drawn from this study are listed as follows. Under future climate change scenarios, the hydrological cycle of each catchment is projected to undergo the following changes. Rainfall in Zengwen catchment is projected to increase by around 4.6%, evapotranspiration increased by around 21.8%, and runoff increased by around 3.9%. In Nanhua catchment, rainfall is projected to increase by around 1.3%, evapotranspiration increased by around 12.5%, and runoff increased by around 4.1%. Rainfall in Mudan catchment is projected to decrease by around 15.1%, evapotranspiration increased slightly by around 0.7%, and runoff decreased by around 26.2%. In Jiaxian catchment, rainfall is projected to decrease by around 6.7%, evapotranspiration decreased by around 7.7%, and runoff increased slightly by around 1.6%. The research results showed that in the future scenarios, the rainfall in Zengwen and Nanhua catchments is projected to increase, while the rainfall in Mudan and Jiaxian catchments is projected to decrease. Evapotranspiration and runoff are projected to increase in Zengwen, Nanhua, and Jiaxian catchments, while evapotranspiration and runoff are projected to decrease in Mudan catchment.

    摘要 i Extended Abstract ii 致謝 vii 目錄 viii 表目錄 x 圖目錄 xiii 符號表 xx 第一章 緒論 1 1-1 研究背景介紹 1 1-2 文獻回顧 2 1-3 本文架構 5 第二章 資料整理與分析 6 2-1 研究區域與資料介紹 6 2-1-1 研究區域 6 2-1-2 資料介紹 9 2-2 研究資料統計分析 15 2-2-1 曾文水庫 15 2-2-2 南化水庫 28 2-2-3 牡丹水庫 41 2-2-4 甲仙攔河堰 54 2-3 溫差與水文因子變化率分析 67 2-4 流量指標特性分析 73 2-4-1 逕流係數(Runoff Coefficient) 73 2-4-2 流態係數(Coefficient of flow regime) 75 第三章 研究方法 85 3-1 Budyko架構(Budyko framework) 85 3-2 Budyko方程式建置成果 87 3-3 建立實際蒸發散及潛勢蒸發散與溫度的關係 89 第四章 氣候變遷下水文因子的變化 92 4-1 氣候變遷情境資料 92 4-2 歷史與氣候變遷情境下水文因子的變化 95 4-3 各情境下近未來與世紀末之水文因子分析 107 第五章 結論 115 參考文獻 117

    Adam, J. C., Clark, E. A., Lettenmaier, D. P., and Wood, E. F. (2006). Correction of global precipitation products for orographic effects. Journal of Climate, 19(1), 15–38.
    Budyko, M. I. (1948). Evaporation under natural conditions, Gidrometeorizdat, Leningrad. English translation by IPST, Jerusalem.
    Budyko, M. I. (1958). The heat balance of the earth’s surface, US Department of Commerce. National Weather Service, Washington, DC, USA, 144–155.
    Budyko, M. I., and Miller, D. H. (1974). Climate and Life. New York: Academic press, 508.
    Choudhury, B. (1999). Evaluation of an empirical equation for annual evaporation using field observations and results from a biophysical model. Journal of Hydrology, 216(1–2), 99–110.
    Dingman, S. L. (2009). Physical Hydrology.
    Fu, B. P. (1981). On the calculation of the evaporation from land surface [in Chinese]. Sci. Atmos. Sin., 5(1), 23–31.
    Greve, P., Gudmundsson, L., Orlowsky, B., and Seneviratne, S. I. (2015). Introducing a probabilistic Budyko framework. Geophysical Research Letters, 42(7), 2261–2269.
    Gao, G., Fu, B., Wang, S., Liang, W., and Jiang, X. (2016). Determining the hydrological responses to climate variability and land use/cover change in the Loess Plateau with the Budyko framework. Science of the Total Environment, 557, 331–342.
    Liang, W., Bai, D., Wang, F., Fu, B., Yan, J., Wang, S., Yang Y., Long D., and Feng, M. (2015). Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China's Loess Plateau. Water Resources Research, 51(8), 6500–6519.
    Lintner, B. R., Gentine, P., Findell, K. L., and Salvucci, G. D. (2015). The Budyko and complementary relationships in an idealized model of large-scale land–atmosphere coupling. Hydrology and Earth System Sciences, 19(5), 2119–2131.
    Mezentsev, V. S. (1955). More on the calculation of average total evaporation. Meteorol. Gidrol, 5, 24–26.
    Milly, P. C. D. (1993). An analytic solution of the stochastic storage problem applicable to soil water. Water Resources Research, 29(11), 3755-3758.
    Miralles, D. G., Holmes, T.R.H., de Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., and Dolman, A.J. (2011). Global land-surface evaporation estimated from satellite-based observations. Hydrology and Earth System Sciences, 15, 453–469, doi: 10.5194/hess-15-453-2011.
    Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-Prieto, D., Beck, H.E., Dorigo, W.A., and Verhoest, N.E.C. (2017). GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Development, 10, 1903–1925, doi: 10.5194/gmd-10-1903-2017.
    Ol’Dekop, E. M. (1911). On evaporation from the surface of river basins. Transactions on meteorological observations, 4, 200.
    Pike, J. G. (1964). The estimation of annual run-off from meteorological data in a tropical climate. Journal of Hydrology, 2(2), 116–123.
    Porporato, A., Daly, E., and Rodriguez-Iturbe, I. (2004). Soil water balance and ecosystem response to climate change. The American Naturalist, 164(5), 625–632.
    Turc, L. (1954). The water balance of soils. Relation between precipitation, evaporation and flow. Ann. Agron, 5, 491–569.
    Wang, D., and Tang, Y. (2014). A one‐parameter Budyko model for water balance captures emergent behavior in Darwinian hydrologic models. Geophysical Research Letters, 41(13), 4569–4577.
    Wang, D., Zhao, J., Tang, Y., and Sivapalan, M. (2015). A thermodynamic interpretation of Budyko and L'vovich formulations of annual water balance: Proportionality hypothesis and maximum entropy production. Water Resources Research, 51(4), 3007–3016.
    Wang, C., Wang, S., Fu, B., and Zhang, L. (2016). Advances in hydrological modelling with the Budyko framework: A review. Progress in Physical Geography, 40(3), 409–430.
    Wu, J., Miao, C., Zhang, X., Yang, T., and Duan, Q. (2017a). Detecting the quantitative hydrological response to changes in climate and human activities. Science of The Total Environment, 586, 328–337.
    Wu, J., Miao, C., Wang, Y., Duan, Q., and Zhang, X. (2017b). Contribution analysis of the long-term changes in seasonal runoff on the Loess Plateau, China, using eight Budyko-based methods. Journal of Hydrology, 545, 263–275.
    Xiong, L., and Guo, S. (2012). Appraisal of Budyko formula in calculating long‐term water balance in humid watersheds of southern China. Hydrological processes, 26(9), 1370–1378.
    Yan Yang, H., Yang, D., Lei, Z., and Sun, F. (2008). New analytical derivation of the mean annual water‐energy balance equation. Water Resources Research, 44(3), W03410.
    Zhang, L., Dawes, W. R., and Walker, G. R. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water resources research, 37(3), 701–708.
    Zhang, L., Hickel, K., Dawes, W. R., Chiew, F. H. S., Western, A. W., and Briggs, P. R. (2004). A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40(2), W02502.
    Dirjen. Rehabilitasi Lahan. (2009). Pedoman Monitoring dan Evaluasi Daerah Aliran Sungai. Jakarta, Indonesia. Lampiran Peraturan Direktur Jenderal Rehabilitasi Lahan dan Perhutanan Sosial. Nomor: P.04/V-SET/2009.
    Schreiber, P. (1904). Über die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Z. Meteorol, 21(10), 441–452.
    王俊寓、林士堯(2021)AR5統計降尺度資料說明文件(2.0 版)。[ 擷取時間:2022.04.16 ],取自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/data_document/20200219113149.pdf
    李忠勳、葉信富(2020)以Budyko架構探討氣候變遷與人為活動造成臺灣北部逕流量之變化,農業工程學報,第66卷,第2期,第26頁至42頁,doi: 10.29974/JTAE.202006_66(2).0003。
    李琦瑋(2018)氣候變遷及都市化增溫情境下臺中市短延時情境雨量推估,碩士論文,逢甲大學水利工程與資源保育學系。
    邱繼成、李宗祐(2021)利用Budyko framework評估現況與氣候變遷情境下台灣各流域水資源之變化,碩士論文,國立臺灣師範大學文學院地理學系。
    林士堯、楊承道(2021)網格化觀測資料說明文件(2.0 版)。[ 擷取時間:2021.06.07 ],取自臺灣氣候變遷推估資訊與調適知識平台: https://tccip.ncdr.nat.gov.tw/upload/data_document/20200219112847.pdf
    林士堯、林修立、童裕翔(2021)AR5統計降尺度月資料生產履歷(4.1 版)。[ 擷取時間:2021.04.30 ],取自臺灣氣候變遷推估資訊與調適知識平台:https://tccip.ncdr.nat.gov.tw/upload/data_profile/20200117110026.pdf
    陳信宇、葉信富(2021)以Budyko曲線分解法與氣候彈性法探討濁水溪沖積扇逕流量改變原因之研究,中華水土保持學報,第 52 卷,第 2 期,第89頁至99頁。
    許晃雄(2021)IPCC AR6第一工作小組報告揭露的氣候危機,中央研究院環境變遷研究中心。
    葉信富、陳進發、李振誥(2005)潛勢能蒸發散經驗公式之最佳化比較,農業工程學報,第51卷,第1期,第27頁至37頁。
    賴彥瑾、陳憲宗、王毓麒(2016)臺中都市熱島效應及增溫對都會區對流降雨之影響,臺灣水利,第64卷,第3期,第13頁至22頁。
    謝佳燊(2017)短延時時雨量繁衍模式研發與應用,碩士論文,逢甲大學水利工程與資源保育學系。
    顏遠騰(2016)短延時降雨事件之時雨量繁衍,碩士論文,逢甲大學水利工程與資源保育學系。
    政府資料開放平臺,直轄市、縣市界線(TWD97經緯度),我國各直轄市以及縣(市)行政區域界線圖資,[ 擷取時間:2021.07.09 ]。https://data.gov.tw/dataset/7442
    TGOS地理資訊圖資雲服務平台https://www.tgos.tw/tgos/web/tgos_home.aspx
    科技部、中央研究院環境變遷研究中心、交通部中央氣象局、臺灣師範大學地球科學系、國家災害防救科技中心(2021)IPCC氣候變遷第六次評估報告之科學重點摘錄與臺灣氣候變遷評析更新報告。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE