簡易檢索 / 詳目顯示

研究生: 簡良如
Chien, Liang-Ju
論文名稱: 新型吸取式三區微流體反應晶片應用於聚合酶連鎖反應
A New Suction-type Microfluidic Reaction Chip for Polymerase Chain Reaction
指導教授: 李國賓
Lee, Gwo-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 86
中文關鍵詞: 微機電系統聚合酶鏈鎖反應分子診斷微流體系統微型加熱器
外文關鍵詞: PCR, microheaters, microfluidics, molecular diagnosis, MEMS
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為一新式的吸取式微流體聚合酶鏈鎖反應晶片,利用微機電系統的製程技術,分別製作了吸取式微流體晶片以及陣列式微型加熱器。晶片微流體晶片中包含三個微閥門及一位於中央之吸取式微流體傳輸薄膜,可即時傳輸之檢體及試劑於三個不同溫度反應區之間。此微流體晶片具有非常高的傳輸效率,在操作頻率為14.29 Hz及操作壓力為3 psi時,其傳輸速度高達18 μL/sec。另外,除了高效率的微流體傳輸晶片之外,本研究使用的微型加熱晶片為陣列式設計,可在邊緣補償其溫度變化,使反應區域內的溫度更加均勻,實驗結果顯示幾乎90 %以上的區域,溫度差異在±1℃之間,具有高度的溫度均勻性。本研究的另一個特點是開放式的反應腔體,其優點為易於在實驗之前作溫度的校正,且可直接從反應區域中將樣品放入或取出,不必另外設置樣品儲放槽,而增加製程上的困難;另外,此種設計亦有助於光學檢測。再者,控制模組可直接設定PCR反應次數及吸取式微幫浦的相關作動參數,在應用上將具有很大的彈性。
      本研究利用國人肝病中常見的C型肝炎病毒(Hepatitis C Virus)作為生物檢測樣本,實驗結果顯示在此吸取式微流體PCR晶片上可成功地達成核酸增幅,並且在偵測極限上可達到5×103 copies/mL。

    A new micromachined circulating polymerase chain reaction (PCR) chip is reported in this study. A new suction-type liquid transportation mechanism and three microvalves were used to comprise a new microfluidic control module to rapidly transport the DNA samples and PCR reagents around three bio-reactors operating at three different temperatures. When operating at a frequency of 14.29 Hz and a pressure of 3 psi, the sample flow rate of the microfluidic control module can be as high as 18 μL/sec. In addition, an array-type microheaters and open-type reaction chambers were adopted to improve the thermal uniformity in the reaction chambers and to facilitate the operation for temperature calibration. Experimental data from infrared images showed that the percentage of the uniformity area inside the reaction chamber with a thermal variation less than 1℃were over 90% for a denaturing temperature of 94℃. Three array-type heaters and temperature sensors were integrated into this new circulating PCR chip to modulate three specific operating temperatures for denaturation, annealing, and extension of nucleic acids. With this approach, the cycle numbers and reaction time of three reaction steps for a PCR procedure can be individually adjusted by the microfluidic control module. To verify the performance of this circulating PCR chip, a PCR process to amplify a detection gene (150 base pairs) associated with hepatitis C virus was performed. Experimental results showed that biosamples with concentrations ranging from 108 to 5×10^3 copies/mL can be successfully amplified by using this PCR chip. Therefore, the new circulating PCR chip can provide a useful platform for genetic identification and diagnosis.

    摘 要 I Abstract III 誌 謝 V 目錄 VII 縮寫及符號說明 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1 生醫微機電系統與生醫晶片簡介 1 1-2 研究動機與目的 3 1-3 研究方法 5 1-4 文獻回顧 6 1-4-1 聚合酶鏈鎖反應 6 1-4-2 平板膠電泳 10 1-4-3 微型聚合酶連鎖反應晶片 11 1-4-4 微型幫浦 14 1-5 論文架構 17 第二章 理論與設計 25 2-1 吸取式聚合酶連鎖反應晶片 25 2-1-1 微流體傳輸模組 25 2-1-2 微型加熱晶片控制模組 28 2-2 檢測流程 31 2-3 晶片控制系統 32 第三章 製程與實驗方法 41 3-1 光罩設計與製作 41 3-2 晶片材料選擇 42 3-3 晶片製程原理及步驟 43 3-3-1 基板清潔 44 3-3-2微加熱晶片製程 46 3-3-3微流道晶片製作 49 3-3-3-1 SU-8母模製程 49 3-3-3-2 PDMS翻模接合 51 第四章 結果與討論 59 4-1 吸取式微流體晶片測試 59 4-2 微反應晶片之熱效能測 61 4-3 C型肝炎之增生及偵測極限 62 4-3-1 吸取式三區PCR系統設定 62 4-3-2 吸取式三區PCR晶片應用於HCV偵測 63 第五章 結論 75 5-1 結論 75 5-2 未來展望 76 參考文獻 79 自述 85 著作 86

    1. P. Bergveld, “The future of biosensors,” Sensors and Actuators A, Vol. 56, pp. 65-73, 1996.
    2. K. K. Jaln, “Biotechnological application of lab-chips and microarrays,” Trends in Biotechnology, Vol.18, pp. 278-280, 2000.
    3. R. Raiteri, M. Grattarola, R. Berger, “Micromechanics senses biomolecules,” Materials Today, Vol. 5, pp. 22-29, 2002.
    4. M. Schena, D. Shalon, R. W. Davis, P. O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, Vol. 270, pp. 467-470, 1995.
    5. D. Figeys, D. Pinto, “Lab-on-a-chip: A revolution in biological and medical sciences,” Analytical Chemistry, Vol. 72(9), pp. 330A-335A, 2000.
    6. A. T. Woolley, Lao K.Q., A. N. Glazer, R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Analytical Chemistry, Vol. 70(4), pp. 684-688, 1998.
    7. N. A. Campbell, J. B. Reece, “Biology,” 6th edition, Benjamin Cummings, 2002.
    8. R. K. Saiki, S. Scharf, F. Faloona, K. B. Mullis, G. T. Horn, H. A. Erlich, N. Arnheim, “Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia,” Science, Vol. 230(4732), pp. 1350-1354, 1985.
    9. R. K. Saiki, D. H. Gelfand, S. Stoffel, S. Scharf, S. Higuchi, G.T. Horn, K. B. Mullis, H. A. Erlich, “Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase” Science, Vol. 239, pp. 487-491, 1988.
    10. 林家澍編譯,“分子生物學速成” 合記圖書,2002.
    11. C.E. Gustafson, R.A. Alm, T. J. Trust, “Effect of heat denaturation of target DNA on the PCR amplification” Gene, Vol. 23(2), pp. 241-244, 1993.
    12. R. F. Weaver, “Molecular biology,”3rd Edition, McGraw-Hill, New York, 2005.
    13. K. Nath, J. W. Sarosy, J. Hahn, C. J. Di Como, “Effects of ethidium bromide and SYBR® Green I on different polymerase chain reaction systems” Journal of Biochemical and Biophysical methods, Vol. 42(1-2), pp. 15-29, 2000.
    14. M. A. Northrup, M. T. Ching, R. M. White, R. T. Waston, “DNA amplifyication with a microfabricated reaction chamber,” Proceedings of Transducers, Chicago, USA, pp. 924-926, 1993.
    15. M. A. Northrup, C. Gonzalez, D. Hadley, R. F. Hills, P. Landre, S. Lehew, R. Saiki, J. J. Sninsky, R. Watson, R. Waston Jr., “A MEMS-based miniature DNA analysis system,” Transducers ’95 Eurosensors IX, pp. 764-767, 1995.
    16. J. H. Daniel, S. Iqbal, R. B. Millington, D. F. Moore, C. R. Lowe, D. L. Leslie, M. A. Lee, M. J. Pearce, “Silicon microchamber for DNA amplification,” Sensors and Actuators A, Vol. 71, pp. 81-88, 1998.
    17. A. T. Woolley, D. Hadley, P. Landre, A. J. deMello, R. A. Mathies, M. A. Northrup, “Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device,” Analytical Chemistry, Vol. 68(23), pp. 4081-4086, 1996.
    18. A. M. Chaudhari, T. M. Woudenberg, M. Albin, K. E. Goodson, “Transient liquid crystal thermometry of microfabricated PCR vessel arrays,” Journal of Microelectromechanical Systems, Vol. 7(4), pp. 345-355, 1998.
    19. E. T. Lagally, R. A. Mathies, ”Integrated PCR-CE system for DNA analysis to the single molecule limit,” Micro Total Analysis Systems, pp. 117-118, 2001.
    20. 廖家陞,“微型自動化核酸增幅系統快速偵測感染性疾病之病原菌”,國立成功大學微機電系統工程研究所碩士論文,2005。
    21. M. U. Kopp, A. J. de Mello, A. Manz, “Chemical amplification: continuous-flow PCR on a chip,” Science, Vol. 280(5366), pp. 1046-1048, 1998.
    22. J. Liu, M. Enzelberger, S. Quake,“A nanoliter rotary device for polymerase chain reaction,” Electrophoresis, Vol. 23(10), pp. 1531-1536, 2002.
    23. P. J. Obeit, T. K. Christopulos, H. J. Crabtree, “Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection,” Analytical Chemistry, Vol. 75, pp. 288-295, 2003.
    24. C. H. Wang, Y. Y. Chen, C. S. Liao, T. M. Hsieh, C. H. Luo, J. J. Wu, H. H. Lee, G. B. Lee, “Micromachined Flow-through Polymerase Chain Reaction Chips Utilizing Multiple Membrane Activations,” Journal of Micromechanics and Microengineering, Vol. 17, pp. 367-375, 2007.
    25. J. S. Jang, S. S. Lee, “Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,” Sensors and Actuators A, Vol. 80(1), pp. 84-89, 2000.
    26. A. Manz, D. J. Harrison, J. C. Verpoorte, H. Ludi, H. M. Widmer, “Integrated electroosmotic pumps and flow manifolds for total chemical analysis systems,” Proceedings of Transducers, pp. 939-941, 1991.
    27. E. Makino, T. Mitsuya, T. Shibata, “Fabrication of TiNi shape memory micropump,” Sensors and Actuators A, Vol. 88(3), pp. 256-262, 2001.
    28. A. Olsson, P. Enoksson, G. Stemme, E. Stemme, “ A vlaveless planar pump isotropically etched in silicon,” Micromechanics Europe, pp. 120-123, 1995.
    29. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol. 288, pp. 113-116, 2000.
    30. S. Timoshenko, S. Woinowsky-Krieger, “Theory of plates and shells” McGraw-Hill, New York, 1959.
    31. J. Y. Pan, P. Lin, F. Maseeh, S. D. Senturia,“Verification of FEM analysis of load-deflection methods formeasuring mechanical properties of thin films” IEEE Solid- State Sensors Workshop, pp. 70–73, 1990.
    32. 陳瑞和,“感測器”,全華科技圖書,83年10月.
    33. 謝宗閔,“使用微機電系統技術進行微小型聚合酵素連鎖反應系統之研製”國立成功大學電機工程研究所碩士論文,2003.
    34. R. Muanghlua, S. Cheirsirikul, S. Supadech, “The study of silicon thermopile,” Proceedings of TENCON, Vol. 3, pp. 226-229, 2000.
    35. I. Brodie, J. J. Muray, “The physical of microfabrication,”Plenum Press, New York, 1982.
    36. B. E. Slentz, N. A. Penner, F. E. Regnier, “Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization,” Journal of Chromatography A, Vol. 948, pp. 225-233, 2002.
    37. D. Armani1, C. Liu, N. Aluru, “An ultra-thin PDMS membrane as a bio/micro–nano interface: fabrication and characterization,” IEEE MEMS ‘99, Florida, USA, pp. 222–227, 1999.
    38. T. M. Hsieh, C. H. Luo, F. C. Huang, J. H. Wang, L. J. Chien, G. B. Lee, “Enhancement of thermal uniformity for a microthermal cycler and its application for polymerase chain reaction,” Sensors and Actuators B, Vol. 130, pp. 848-856, 2008.

    下載圖示 校內:2009-08-18公開
    校外:2009-08-18公開
    QR CODE