| 研究生: |
張晉誠 Chang, Ching-Cheng |
|---|---|
| 論文名稱: |
網格式國土防災圖資精度分析與探討-以台南市斷層周邊地區為例 Exploring and analysis of the accuracy of raster data : A case study of the fault zone in Tainan City |
| 指導教授: |
張學聖
Chang, Hsueh-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 比例尺 、網格式資料 、斷層帶 、精度 、多尺度分析 、解析度 、GIS |
| 外文關鍵詞: | GIS, scale, grid size, raster data, multi-scale, resolution |
| 相關次數: | 點閱:120 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣的國土資源隨著土地開發與氣候變遷受到嚴重破壞。現行都市計畫多運用既有土地使用圖資與災害潛勢敏感圖資套疊找出高風險地區,以便針對高災害風險地區進行重新檢視。然而在務實面上許多電子資料基礎的地形圖、土地使用圖與環境敏感地圖都是建立在地理資訊系統資料庫,環境敏感地圖資與都市規劃應用圖資因為原始資料精度不符或是呈現方式不佳,導致電子系統中高估原始精度較低的圖資,套疊至高精度圖資產生誤差,難以將地圖資料所表達的空間資訊在同一圖面上有效傳達,進而引發誤用的疑慮。因此必須正視規劃使用圖資精度與資料呈現方式的問題。
本研究為探討網格大小與地圖比例尺的關係,以圖資精度不一致作為出發點,使用台南市95年國土現況調查與台南市活動斷層範圍為基礎,從地圖與尺度本身的意義去找出適當尺度,以向量式與網格式資料結構上呈現的特性比較斷層帶研究適合的資料格式表現法,再探討適當網格解析度的定義與研究方法,並以網格大小(cell size) 為變數的多尺度變異數分析的基礎研究,驗證由地圖簡約化導出的視覺理論作為地圖比例尺與網格大小轉換關係的合理性。找出網格式地圖資料在不同尺寸變化時,各網格大小之間的同質性與異質性,說明不同網格大小資料庫之間的門檻值,指出不同比例尺之間的地圖對應範圍。另一方面比較兩種適宜解析度分析方法的差異,結果發現在同一尺度下採用網格單元方法分析所得的研究區平均屬性精度損失大於常規分析方法分析得到的平均屬性精度損失,網格單元分析方法不僅能夠準確地定量估計網格化的屬性精度損失,而且能客觀地反映屬性精度損失的空間分佈。最後將衛星影像作為規劃成本與不同精度圖資的關係進行探討,結果指出高精度需求以1公尺以下為主、中度精度需求為5~20公尺、低解析度需求為30~100公尺。因此,本研究建議研究能夠針對不同解析度下各類情境之土地使用用途、網格判定模式做系統性且詳細的分類並進行設定並加以探討,來增進研究的實用性。
In recent decades, changes in climate have caused severe impacts on land resources and human systems in Taiwan. The current urban planners use the application of geographical information system (GIS) analysis in finding highly risk area with land use map and potential disaster map for reasonable resources planning and management. Recently researchers and urban planners can use lots of digital maps based on GIS and information model on computer, create printed maps customized to the needs and perform spatial analysis. However, the resolution and scale of these vector data or raster data aren’t all the same. The urban planners face a problem in the analysis of data with difference spatial scale; this may cause the misunderstanding and misuse of the analysis result. Hence the suitable grid-cell size for output maps is the essential issue of urban planning and spatial science.
In this paper we explored the relationship between spatial scale and GIS cell resolution. First, rasterizing the vector land-use map and Taiwan active faults map, using one-way ANOVA test to compare the effect of different grid sizes on land-use database. The findings indicate a different aspect of GIS-based digital map and appropriate grid size of the in land use planning. Second, we compare two evaluation methods of attribute accuracy loss, which are Normal Analysis Method and Method Based on Grid Cell, respectively, and analyzes the scale effect of attribute (area) accuracy loss at different scales by the two evaluating methods comparatively. The findings indicate that :(1) At the same scale, mean attribute accuracy loss computed by Method Based on Grid Cell are significantly bigger than that computed using Normal Analysis Method. (2) Method Based on Grid Cell can not only estimate rasterization attribute accuracy loss accurately, but can express the spatial distribution of rasterization attribute loss objectively. Finally we compare the cost of satellite imagery with difference resolution as the cost of planning. The results also highlight three standard grid resolutions for output maps were finally recommended: (1)high resolution need,1 meter; (2)medium resolution need, 5~20 meters; and (3)low resolution need, 30~100 meters.
1. 李明儒(2008),不同空間尺度下網格式土地使用變遷模型之敏感性分析,臺灣大學建築與城鄉研究所碩士論文。
2. 李萬凱、林建元、孫志鴻、榮峻德(2007),工商及戶口普查資料空間分派模式之建立及運用,「建築學報」,第59 期,第127-144 頁。
3. 陳嘉茹(2008),以空間型構法則與階層線性模式探討交通路網結構對都市商業型態影響之研究,國立成功大學都市計劃研究所碩士論文。
4. 黃任薇(2007),GIS網格解析度之研究,國立成功大學都市計劃研究所碩士論文。
5. 黃書偉(2010),土地混合使用空間型態量測與其影響因素之研究,國立成功大學都市計劃研究所博士論文。
6. 董建樑(2012),應用空間分析方法於都市緊湊指標之研究,國立成功大學都市計劃研究所碩士論文。
7. 財團法人台灣地理資訊中心(2013),「應用既有災害潛勢敏感套彙圖資重新檢視現行土地使用計畫之合理性」結案報告,行政院經濟建設委員會。
8. 王慧麟等(2009),測量與地圖學二版,南京大學出版社,ISBN 978-7-305-04292-8。
9. 經濟部中央地質調查所(1998),臺灣活動斷層概論特刊 第10號,經濟部中央地質調查所地質出版品。
10. 經濟部中央地質調查所(2014),活動斷層地質敏感區劃定計畫書,F0001 車籠埔斷層,經濟部中央地質調查所地質出版品。
11. 杨存建, & 张增祥. (2001). 矢量数据在多尺度栅格化中的精度损失模型探讨. 地理研究, 4.
12. Allen, C. R. (1975). Geological Criteria for Evaluating Seismicity Address as Retiring President of The Geological Society of America, Miami Beach, Florida, November 1974. Geological Society of America Bulletin, 86(8), 1041-1057.
13. Atkinson, P. M., & Curran, P. J. (1995). Defining an optimal size of support for remote sensing investigations. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 768-776.
14. Atkinson, P. M., & Curran, P. J. (1997). Choosing an appropriate spatial resolution for remote sensing investigations. Photogrammetric engineering and remote sensing, 63(12), 1345-1351.
15. Bai, Y., Liao, S. B., & Sun, J. L. (2011). Evaluating methods and scale effects of attribute information loss in rasterization: A case study of 1: 250000 land cover data of Sichuan. Acta Geographica Sinica, 66(5), 709-717.
16. Bishop, T. F. A., McBratney, A. B., & Whelan, B. M. (2001). Measuring the quality of digital soil maps using information criteria. Geoderma, 103(1), 95-111.
17. Bonilla, M. G. (1975). A review of recently active faults in Taiwan (No. 75-41). US Geological Survey,.
18. Burrough, P. A., McDonnell, R. A., McDonnell, R., & Lloyd, C. D. (2015).Principles of geographical information systems. Oxford University Press.
19. Cunjian, Y., Jiyuan, L., & Zengxiang, Z. (2001). The models of the accuracy loss during rasterizing landuse vector data with multi-scale grid size. In Info-tech and Info-net, 2001. Proceedings. ICII 2001-Beijing. 2001 International Conferences on (Vol. 1, pp. 381-386). Ieee.
20. Chang, K. T., Khatib, Z., & Ou, Y. (2002). Effects of zoning structure and network detail on traffic demand modeling. Environment and Planning B: Planning and design, 29(1), 37-52.
21. Cheng, J., & Masser, I. (2003). Modelling urban growth patterns: a multiscale perspective. Environment and Planning A, 35(4), 679-704.
22. Chen, J. J., Zhou, C. H., & Cheng, W. M. (2007). Area error analysis of vector to raster conversion of areal feature in GIS. Acta Geodaetica et Cartographica Sinica, 36(3), 344-350.
23. Colombo, S., Chica-Olmo, M., Abarca, F., & Eva, H. (2004). Variographic analysis of tropical forest cover from multi-scale remotely sensed imagery.ISPRS journal of photogrammetry and remote sensing, 58(5), 330-341.
24. Cunjian, Y., Jiyuan, L., & Zengxiang, Z. (2001). The models of the accuracy loss during rasterizing landuse vector data with multi-scale grid size. In Info-tech and Info-net, 2001. Proceedings. ICII 2001-Beijing. 2001 International Conferences on (Vol. 1, pp. 381-386). Ieee.
25. Dark, S. J., & Bram, D. (2007). The modifiable areal unit problem (MAUP) in physical geography. Progress in Physical Geography, 31(5), 471-479.
26. DeMers, M. N. M. N. (2002). GIS modeling in raster (No. 910.285 D4).
27. Dendoncker, N., Schmit, C., & Rounsevell, M. (2008). Exploring spatial data uncertainties in land‐use change scenarios. International Journal of Geographical Information Science, 22(9), 1013-1030.
28. Florinsky, I. V., & Kuryakova, G. A. (2000). Determination of grid size for digital terrain modelling in landscape investigations—exemplified by soil moisture distribution at a micro-scale. International Journal of Geographical Information Science, 14(8), 815-832.
29. Galton, A. (2003). Integrating Fields and Objects in Geographic Information Science. In Workshop on Fundamental Issues in Spatial and Geographic Ontologies, Switzerland.
30. Gehlke, C. E., & Biehl, K. (1934). Certain effects of grouping upon the size of the correlation coefficient in census tract material. Journal of the American Statistical Association, 29(185A), 169-170.
31. Hay, J., T. Blaschkeb, D. J. Marceaua, and A. Bouchardc, 2003. “A comparison of three image-object methods for the multiscale analysis of landscape structure”, Photogrammetry & Remote Sensing 57, 327–345.
32. Haynes, R., Daras, K., Reading, R., & Jones, A. (2007). Modifiable neighbourhood units, zone design and residents’ perceptions. Health & Place,13(4), 812-825.
33. Hengl, T. (2006). Finding the right pixel size. Computers & Geosciences, 32(9), 1283-1298.
34. Heywood, I., S. Cornelius, and S. Carver, 1998. An Introduction to Geographical Information System, Longman.
35. Horner, M. W., & Murray, A. T. (2004). Spatial representation and scale impacts in transit service assessment. Environment and Planning B: Planning and Design, 31(5), 785-797.
36. Hyppänen, H. (1996). Spatial autocorrelation and optimal spatial resolution of optical remote sensing data in boreal forest environment. International Journal of Remote Sensing, 17(17), 3441-3452.
37. Jelinski, D. E., & Wu, J. (1996). The modifiable areal unit problem and implications for landscape ecology. Landscape ecology, 11(3), 129-140.
38. Ju, J., Gopal, S., & Kolaczyk, E. D. (2005). On the choice of spatial and categorical scale in remote sensing land cover classification. Remote Sensing of Environment, 96(1), 62-77.
39. Kienzle, S. (2004). The effect of DEM raster resolution on first order, second order and compound terrain derivatives. Transactions in GIS, 8(1), 83-111.
40. Kuo, W. L., Steenhuis, T. S., McCulloch, C. E., Mohler, C. L., Weinstein, D. A., DeGloria, S. D., & Swaney, D. P. (1999). Effect of grid size on runoff and soil moisture for a variable-source-area hydrology model. Water Resources Research, 35(11), 3419-3428.
41. Liang, X., Guo, J., & Leung, L. R. (2004). Assessment of the effects of spatial resolutions on daily water flux simulations. Journal of Hydrology, 298(1), 287-310.
42. Manley, D., Flowerdew, R., & Steel, D. (2006). Scales, levels and processes: studying spatial patterns of British census variables. Computers, environment and urban systems, 30(2), 143-160.
43. McBratney, A. B. (1998). Some considerations on methods for spatially aggregating and disaggregating soil information. In Soil and water quality at different scales (pp. 51-62). Springer Netherlands.
44. Muller, J. C. (1991). Generalization of spatial databases. Geographical Information Systems: principles and applications, 1, 457-475.
45. Kwan, M. P., & Weber, J. (2008). Scale and accessibility: Implications for the analysis of land use–travel interaction. Applied Geography, 28(2), 110-123.
46. Lembo, A. J., Lew, M. Y., Laba, M., & Baveye, P. (2006). Use of spatial SQL to assess the practical significance of the modifiable areal unit problem.Computers & geosciences, 32(2), 270-274.
47. Li, Z., & Openshaw, S. (1993). A natural principle for the objective generalization of digital maps. Cartography and Geographic Information Systems, 20(1), 19-29.
48. Marceau, D. J. (1999). The scale issue in the social and natural sciences. Canadian Journal of Remote Sensing, 25(4), 347-356.
49. Marceau, D. J., & Hay, G. J. (1999). Remote sensing contributions to the scale issue. Canadian journal of remote sensing, 25(4), 357-366.
50. Ménard, A., & Marceau, D. J. (2005). Exploration of spatial scale sensitivity in geographic cellular automata. Environment and Planning B: Planning and Design, 32(5), 693-714.
51. McDermid, G. J., Franklin, S. E., & LeDrew, E. F. (2005). Remote sensing for large-area habitat mapping. Progress in Physical Geography, 29(4), 449-474.
52. McMaster, R. B., & Shea, K. S. (1992). Generalization in digital cartography. Washington, DC: Association of American Geographers.
53. Mingliang, L., Xianming, T., Jiyuan, L., & Da-fang, Z. H. U. A. N. G. (2001). Research on scaling effect based on 1km grid cell data. Journal of Remote sensing, 5(3), 183-190.
54. Moellering, H., & Tobler, W. (1972). Geographical variances. Geographical Analysis, 4(1), 34-50.
55. Openshaw, S., & Taylor, P. J. (1979). A million or so correlation coefficients: three experiments on the modifiable areal unit problem. Statistical applications in the spatial sciences, 21, 127-144.
56. Openshaw, S., Taylor, P. J., Wrigley, N., & Bennett, R. J. (1981). Quantitative geography: a British view. Quantitative geography: a british view.
57. Openshaw, S., & Openshaw, S. (1984). The modifiable areal unit problem. Geo Abstracts University of East Anglia.
58. Openshaw, S., & Openshaw, S. (1997). Artificial intelligence in geography (No. 04; G70. 2, O64.).
59. Randolph, J. (2004). Environmental land use planning and management. Island Press.
60. Rossiter, D. G., & Hengl, T. (2002). Technical note: Creating geometrically-correct photo-interpretations, photomosaics, and base maps for a project GIS.ITC, Department of Earth System Analysis, Enschede, Netherlands.[Online] Available at Http://www. itc. nl/personal/rossiter/(verified 15 Feb. 2006).
61. Snellen, D., Borgers, A., & Timmermans, H. (2002). Urban form, road network type, and mode choice for frequently conducted activities: a multilevel analysis using quasi-experimental design data. Environment and Planning A, 34(7), 1207-1220.
62. Stein, A., Riley, J., & Halberg, N. (2001). Issues of scale for environmental indicators. Agriculture, Ecosystems & Environment, 87(2), 215-232.
63. Swift, A., Liu, L., & Uber, J. (2008). Reducing MAUP bias of correlation statistics between water quality and GI illness. Computers, Environment and Urban Systems, 32(2), 134-148.
64. Trifonov, V. G., & Machette, M. N. (1993). The world map of major active faults project. Annals of Geophysics, 36(3-4).
65. Tsai, Y. B., Teng, T. L., Chiu, J. M., & Liu, H. L. (1977). Tectonic implications of the seismicity in the Taiwan region. Mem. Geol. Soc. China, 2, 13-41.
66. Vink, A. P. (1975). Development of Land Use in Advancing Agriculture. In Land Use in Advancing Agriculture (pp. 327-369). Springer Berlin Heidelberg.
67. Wang, G., Gertner, G., Xiao, X., Wente, S., & Anderson, A. B. (2001). Appropriate plot size and spatial resolution for mapping multiple vegetation types. Photogrammetric Engineering and Remote Sensing, 67(5), 575-584.
68. Wiens, J. A. (1989). Spatial scaling in ecology. Functional ecology, 3(4), 385-397.
69. Wilson, J. P., Repetto, P. L., & Snyder, R. D. (2000). Effect of data source, grid resolution, and flow-routing method on computed topographic attributes. Terrain analysis: principles and applications, 133-161.
70. Woodcock, C. E., & Strahler, A. H. (1987). The factor of scale in remote sensing. Remote sensing of Environment, 21(3), 311-332.
71. Wu, J., 2004. “Effects of changing scale on landscape pattern analysis: scaling relation”, Landscape Ecology 19: 125–138
72. Wu J., D.E. Jelinski, M. Luck, and P.T. Tueller, 2000. “Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics”, Geographic Information Sciences 6(1), 6-19
73. Wu, J. (1999). Hierarchy and scaling: extrapolating information along a scaling ladder. Canadian journal of remote sensing, 25(4), 367-380.
74. Wu, J., & Li, H. (2006). Concepts of scale and scaling. In Scaling and uncertainty analysis in ecology (pp. 3-15). Springer Netherlands.
75. Wu, J., Shen, W., Sun, W., & Tueller, P. T. (2002). Empirical patterns of the effects of changing scale on landscape metrics. Landscape Ecology, 17(8), 761-782.
76. Jacek Malczewski,2004. “GIS-based land-use suitability analysis: a critical overview”, Progress in Planning 62 (2004) 3–65
77. Zhang, W., & Montgomery, D. R. (1994). Digital elevation model grid size, landscape representation, and hydrologic simulations. Water resources research, 30(4), 1019-1028.