簡易檢索 / 詳目顯示

研究生: 江怡蓁
Chiang, I-Chen
論文名稱: 高分子混摻對於電紡絲纖維物理性質的影響
Effect of polymer blends on the physical properties of electrospun fibers
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 94
中文關鍵詞: 電紡絲
外文關鍵詞: electrospinning
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗分成兩部份,第一部份探討高分子混摻對電紡絲纖維物理性質的影響;第二部份則為孔洞電紡絲纖維之製備。在第一部份實驗中,以聚羥基丁酸酯(PHB)製備電紡絲纖維,分別改變電壓、體積流速、溶液濃度,探討改變製程參數對纖維形態的影響。當電壓增加,會產生直徑較小且表面較粗糙的纖維;流速增加,得到直徑較大且表面粗糙之纖維;較大的溶液濃度,會產生直徑較大且表面平滑之纖維。以PHB混摻共聚物(羥基丁酸酯-羥基戊酸酯)(PHBV)製備電紡絲纖維。由SEM圖可發現,隨著混摻比例不同,會出現不同表面形態及直徑之纖維,PHBV(5% HV)之纖維,有最大的直徑而表面出現較多孔洞,PHBV(12% HV)之纖維有最小的直徑且表面光滑,並交聯成網狀結構;由DSC圖可發現,PHB混摻PHBV(12% HV)會造成熔點的下降,但混摻PHBV(5% HV),則因PHV含量太少,使熔點沒有明顯變化,PHB成核速率隨著混摻PHBV而增加;此外,經過混摻的電紡絲纖維,不會改變結晶形態;由SAXS數據可得到,混摻PHBV後,纖維之結晶度有些微下降,比較DSC數據亦有同樣結果; PHB混摻PHBV後,會使纖維所形成的薄膜之抗拉強度增加,混摻HV含量較高之PHBV(12% HV),抗拉強度更為提升,可增加其應用性。
    第二部份實驗,將聚偏氟乙二烯(PVDF)混摻不同比例聚苯乙烯(PS),製備電紡絲纖維,再以toluene移除PS,得到具備孔洞結構之纖維。由BET量測結果得到,當混摻纖維移除PS後,會使表面積和孔洞大小增加,當PVDF混摻分子量較低之PS(Mw~2400)時,所製備之電紡絲纖維,亦有較大的表面積和孔洞。

    There are two main topics in this study. In the first part we investigated the effect of polymer blends on the physical properties of electrospun fibers. The surface morphology and diameter of electrospun fibers depend on the applied voltage, volumetric flow rate and solution concentration. From SEM image, the diameter of poly(3-hydroxybutyrate)(PHB) fiber decreases with an increase in the applied voltage, but the surface of fibers becomes rough. The thinner and the smoother fibers were obtained with the low volumetric flow rate. The fibers also became thinner and had higher roughness with decreasing solution concentration. PHB was then blended with poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) to prepare fibers. It was obtained that neat PHBV (12% HV) fibers exhibit the thinnest and smoothest structure. In contrast, the neat PHBV (5% HV) fibers are thicker and develop a pore structure on the surface. The DSC measurement showed that the melting temperature (Tm) of PHB decreases with the addition of PHBV(12% HV). However, the Tm of PHB/PHBV(5% HV) blends was nearly identical due to the low content of HV. In addition, the degree of crystallinity of blends decreases with an increase in the PHBV concentration. From the XRD analysis the crystal structure of the blends is consistent regardless of the blend composition. The mechanical properties of PHB/PHBV membrane suggest the enhancement of the fiber strength upon the addition of PHBV. Additionally, the tensile strength of PHB/PHBV(12% HV) membrane is much larger than that of PHB/PHBV(5% HV). This is attributed to the content of HV in the blends.
    The second part focuses on the fabrication of the porous electrospun fibers. The poly(vinylidene fluoride)(PVDF) was electrospun to prepare nanofibers with various compositions of PS. Then PS was removed by the selective dissolving PS in toluene. The BET measurement showed that the pore size and surface area of fibers increase after PS is removed. These fibers exhibit the greater surface area and pore size when the low molecular weight PS (Mw~2400) is blended with PVDF.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.2.1 生物相容性高分子纖維 2 1.2.2 PVDF/PS 3 第二章 文獻回顧 4 2.1 奈米纖維的簡介與應用 4 2.2 電紡絲技術 6 2.3 電紡絲製程參數 7 2.3.1 電壓對於纖維的影響 7 2.3.2 流速對於纖維的影響 8 2.3.3 溶液濃度對於纖維的影響 8 2.3.4 導電度對於纖維的影響 9 2.4 孔洞纖維的製造 10 2.5 生物可分解性高分子 11 2.6 聚羥基丁酸酯簡介 12 2.7 聚偏氟乙二烯簡介 13 第三章 實驗 14 3.1 實驗藥品與儀器 14 3.1.1 藥品 14 3.1.2 儀器 16 3.1.3 電紡絲裝置 17 3.2 實驗步驟 18 3.2.1 PHBV/PHB 18 3.2.2 PVDF/PS 20 3.3 儀器簡介 22 3.3.1 高解析場發射掃描式電子顯微鏡 22 3.3.2 微差熱掃描卡計 23 3.3.3 小角度X光散射儀 24 3.3.4 X光繞射儀 25 3.3.5 傅立葉轉換紅外線光譜儀 26 3.3.6 比表面積及孔隙度分析儀 27 3.3.7 動態機械分析儀 29 第四章 結果與討論 31 4.1 PHBV/PHB 31 4.1.1 電壓對纖維形態的影響 31 4.1.2 體積流速對纖維形態的影響 36 4.1.3 溶液濃度對纖維形態的影響 39 4.1.4 PHBV/PHB摻合比例對纖維形態的影響 42 4.1.5 PHBV/PHB摻合比例對纖維結晶度的影響 49 4.1.6 PHBV/PHB摻合比例對纖維結晶形態的影響 63 4.1.7 PHBV/PHB摻合比例對機械強度的影響 65 4.2 PVDF/PS 67 4.2.1 不同濃度、電壓和體積流速對纖維形態的影響 67 4.2.2 混摻高分子製備奈米纖維 75 4.2.3 製備多孔結構之纖維 81 4.2.4 FTIR分析混摻纖維 85 4.2.5 DSC分析混摻纖維 86 4.2.6 電紡絲纖維之表面積及孔洞大小 88 第五章 結論 89 Reference 91

    1. Z.-M. Huang, Y. Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 2003, 63, 2223
    2. 吳千舜,諸柏仁, Chemistry(The Chinese Chem. SOC., TAIPEI), 2004, 62, 123
    3. S. H. Oh, S. L. Kang, K. U. Jeong, C. Nah, and B. H. Cho, Int. J. Mod Phys B, 2009, 23, 1313
    4. S. O. Han, W. K. Son, D. W. Cho, J. H. Youk, and W. H. Park, Polym. Degrad. Stab., 2004, 86, 257
    5. S. W. Choi, J. R. Kim, Y. R. Ahn, S. M. Jo, and E. J. Cairns, Chem. Mater., 2007, 19, 104
    6. M. Nasir, H. Matsumoto, M. Minagawa, A. Tanioka, T. Danno, and H. Horibe, Polym. J., 2007, 39, 1060
    7. L. L. Zhang, X. M. Deng, S. J. Zhao, and Z. T. Huang, J. Appl. Polym. Sci., 1997, 65, 1849
    8. L. L. Zhang, X. M. Deng, S. J. Zhao, and Z. T. Huang, Polymer, 1997, 38, 6001
    9. M. Scandola, M. L. Focarete, G. Adamus, W. Sikorska, I. Baranowska, S. Swierczek, M. Gnatowski, M. Kowalczuk, and Z. Jedlinski, Macromolecules, 1997, 30, 2568
    10. K. Gao, X. G. Hu, C. S. Dai, and T. F. Yi, Mater. Sci. Eng., B, 2006, 131, 100
    11. K. M. Abraham, M. Alamgir, and D. K. Hoffman, J. Electrochem. Soc., 1995, 142, 683
    12. S. S. Choi, Y. S. Lee, C. W. Joo, S. G. Lee, J. K. Park, and K. S. Han, Electrochim. Acta, 2004, 50, 339
    13. 吳大誠,杜仲良,高緒珊, 奈米纖維, 五南圖書出版有限公司, 2004
    14. F. Anton, Process and apparatus for preparing artificial threads. 1934, Richard, Schreiber Gastell,Anton, Formhals: United States.
    15. F. Anton, Artificial thread and method of producing same. 1940, Richard, Schreiber Gastell: United States.
    16. G. Taylor, Proc. R. Soc. London, Ser. A, 1969, 313, 453
    17. M. Cloupeau and B. Prunetfoch, J. Electrostat, 1989, 22, 135
    18. P. K. Baumgarten, J. Colloid Interface Sci., 1971, 36, 71
    19. I. Hayati, A. I. Bailey, and T. F. Tadros, J. Colloid Interface Sci., 1987, 117, 205
    20. T. Subbiah, G. S. Bhat, R. W. Tock, S. Pararneswaran, and S. S. Ramkumar, J. Appl. Polym. Sci., 2005, 96, 557
    21. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. B. Tan, Polymer, 2001, 42, 261
    22. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 2002, 35, 8456
    23. X. H. Zong, K. Kim, D. F. Fang, S. F. Ran, B. S. Hsiao, and B. Chu, Polymer, 2002, 43, 4403
    24. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 2000, 87, 4531
    25. M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff, Adv. Mater., 2001, 13, 70
    26. 朱惟君, 環保署資源回收月刊, 2008
    27. S. J. Peter, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos, J. Biomed. Mater. Res., 1998, 43, 422
    28. C. T. Laurencin, M. A. Attawia, H. E. Elgendy, and K. M. Herbert, Bone, 1996, 19, S93
    29. L. E. Freed, A. P. Hollander, I. Martin, J. R. Barry, R. Langer, and G. Vunjak-Novakovic, Exp. Cell. Res., 1998, 240, 58
    30. C. A. Vacanti, R. Langer, B. Schloo, and J. P. Vacanti, Plast. Reconstr. Surg., 1991, 88, 753
    31. J. Y. Hao and X. M. Deng, Polymer, 2001, 42, 4091
    32. K. Sombatmankhong, O. Suwantong, S. Waleetorncheepsawat, and P. Supaphol, J. Polym. Sci., Part B: Polym. Phys., 2006, 44, 2923
    33. B. Mohammadi, A. A. Yousefi, and S. M. Bellah, Polym. Test., 2007, 26, 42
    34. Y. Ye, Y. D. Jiang, Z. M. Win, and H. J. Zeng, Integr. Ferroelectr., 2006, 80, 245
    35. 鄭有舜, 物理雙月刊, 2004, 2
    36. 陳信龍,鄭有舜, 科儀新知, 2007, 29, 18
    37. S.Brunaller, P.H.Emmett, and E.Teller, J. Am. Chem. Soc., 1938, 60, 390
    38. E.P.Barrett, L.G.Joner, and P.P.Halenda, J. Am. Chem. Soc., 1951, 73, 373
    39. W.Thomson, Phil.Mag.S., 1871, 42, 448
    40. L. Gunaratne and R. A. Shanks, Eur. Polym. J., 2005, 41, 2980
    41. Q.-S. Liu, M.-F. Zhu, W.-H. Wu, and Z.-Y. Qin, Polym. Degrad. Stab., 2009, 94, 18
    42. S. Yamada, Y. Wang, N. Asakawa, N. Yoshie, and Y. Inoue, Macromolecules, 2001, 34, 4659
    43. A. Buzarovska, G. Bogoeva-Gaceva, A. Grozdanov, M. Avella, G. Gentile, and M. Errico, Aust. J. Crop. Sci., 2008, 1, 37
    44. W. T. Chuang, U. S. Jeng, P. D. Hong, H. S. Sheu, Y. H. Lai, and K. S. Shih, Polymer, 2007, 48, 2919
    45. N. Keiji, A. Hideki, and I. Tadahisa, Materials, 2009, 2, 1104
    46. N. Yoshie, M. Saito, and Y. Inoue, Macromolecules, 2001, 34, 8953
    47. S. Jose, A. S. Aprem, B. Francis, M. C. Chandy, P. Werner, V. Alstaedt, and S. Thomas, Eur. Polym. J., 2004, 40, 2105
    48. A. J. Peacock and L. Mandelkern, J. Polym. Sci., Part B: Polym. Phys., 1990, 28, 1917
    49. L. Yang, Y. Niu, H. Wang, and Z. Wang, Polymer, 2009, 50, 627
    50. A. Bianco, E. Di Federico, I. Moscatelli, A. Camaioni, I. Armentano, L. Campagnolo, M. Dottori, J. M. Kenny, G. Siracusa, and G. Gusmano, Mater. Sci. Eng., C, 2009, 29, 2063
    51. X. Wei, Z. Xia, S.-C. Wong, and A. Baji, Int. J. Experimental and Computational Biomechanics, 2009, 1, 45
    52. Y. Chen, J. Guo, and H. Kim, React. Funct. Polym., 2010, 70, 69

    下載圖示 校內:2012-07-21公開
    校外:2012-07-21公開
    QR CODE