簡易檢索 / 詳目顯示

研究生: 林南西
Lin, Nancy
論文名稱: 加氫脫硫廢觸媒中有價金屬鎳、釩、鉬浸出之研究
Extraction of Nickel, Vanadium and Molybdenum from Spent Hydrodesulfurization Catalyst
指導教授: 申永輝
Shen, Yong-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 廢觸媒酸焙燒
外文關鍵詞: Spent Hydrodesulfurization catalyst, Nickel, Vanadium, Molybdenum, Sulphtization roasting
相關次數: 點閱:101下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內每年產生量超過約13,000噸之加氫脫硫廢觸媒,其中富含鈷、鉬、鎳、釩等有價金屬成分,然若隨意棄置則有價金屬可能被溶出而造成環境二次汙染。本研究首先將廢觸媒進行預熱處理,再以TOC、XRD進行性質分析。由TOC分析得知,預熱處理溫度越高且持溫時間越久,使廢觸媒表面之有機碳及焦油能完全去除。而XRD分析結果證實,預熱處理溫度達600℃以上,即有足夠的熱能產生氧化焙燒效果使廢觸媒中金屬硫化物轉化為金屬氧化物。接下來針對經預熱處理後的廢觸媒樣品分別採用硫酸化焙燒-浸漬程序及直接酸浸漬程序來探討鎳、釩、鉬之最佳浸出條件。結果顯示,預熱處理600℃持溫2hr之廢觸媒樣品與NaHSO4•H2O(s)以重量配比1:7.5均勻混合,於酸焙燒溫度為600℃,酸焙燒持溫時間為1hr,浸漬液為3N H2SO4(aq),浸漬溫度為70℃,浸漬時間為30min,廢觸媒樣品中釩浸出率即可達100%,鎳浸出率為91.2%,鉬浸出率為90.6%,此為鎳、釩、鉬之最佳浸出條件。而以經600℃、2hr預熱處理之廢觸媒樣品直接進行酸浸漬,需要使用高濃度的硫酸浸漬液,才能使鎳、釩、鉬達到與酸焙燒-浸漬程序同樣的浸出效果。

    It is estimated that more than 13,000 tons of spent hydrodesulfurization catalysts are annually generated in Taiwan, which contains valuable metals like cobalt, molybdenum, nickel, vanadium, etc. If the spent hydrodesulfurization catalysts are disposed directly, the released metals may cause a secondary pollution of the environment.
    In this study, the spent hydrodesulfurization catalysts were first processed by a thermal pretreatment, and its effects were determined by TOC and XRD analysis. Results of TOC analysis that preheating in higher temperature and longer time will indicated the oil and tar on the surface of spent hydrodesulfurization catalysts were completely removed. The results of XRD analysis confirmed that preheating the samples at 600℃ for 5h provides enough energy to induce an oxidized roasting reaction in samples which transforms the sulphides into oxide. Next, the extraction of nickel, vanadium and molybdenum from spent HDS catalysts by using the sulphtization roasting-leaching process and direct acid leaching process was discussed. The result indicated that the best conditions for nickel, vanadium and molybdenum extraction were: thermal pretreatment at 600℃ for 2h, spent HDS catalyst/ NaHSO4•H-2O(s) mixed mass ratio of 1/7.5, acid roasting temperature of 600℃, acid roasting time of 1h, leaching solution of 3N H2SO4(aq), leaching temperature of 70℃ and leaching time of 30min. The final extraction rate for vanadium, nickel and molybdenum were 100%, 91.2% and 90.6% respectively. Finally, extraction of vanadium, nickel and molybdenum using direct acid leaching method consume much more sulfuric acid than using the sulphtization roasting-leaching method.

    摘要.......................................................I Abstract..................................................II 誌謝......................................................IV 目錄.......................................................V 表目錄.....................................................IX 圖目錄.....................................................XI 第一章 緒論.................................................1 1.1 研究背景................................................1 1.2 研究目的................................................4 第二章 理論基礎與前人研究......................................5 2.1 廢觸媒..................................................5 2.1.1 廢觸媒來源............................................5 2.1.2 廢觸媒資源化技術........................................7 2.2 鎳、釩、鉬金屬之基本性質..................................10 2.2.1 鎳..................................................10 2.2.2 釩..................................................10 2.2.3 鉬..................................................11 2.3 濕式冶煉法.............................................12 2.3.1 預處理...............................................13 2.3.1.1 氧化焙燒...........................................14 2.3.1.2 硫酸化焙燒.........................................15 2.3.2 浸漬溶蝕.............................................19 2.3.3 固液分離.............................................20 2.4 實驗儀器原理之介紹.......................................21 2.4.1 X-光繞射儀(X-ray diffraction, XRD)...................21 2.4.2 總有機碳分析儀(Total Organic Carbon Analyzer, TOC)....22 2.4.3 光學顯微鏡(Optical Microscope, OM)...................23 2.4.4 原子吸收光譜儀(Atomic Absorption Spectrophotometer, AA).......................................................23 2.5 前人研究...............................................24 第三章 實驗材料與方法........................................32 3.1 實驗材料與設備..........................................32 3.1.1 實驗材料.............................................32 3.1.2 實驗藥品.............................................34 3.1.3 實驗設備.............................................34 3.2 實驗方法與步驟..........................................36 3.2.1 廢觸媒原樣之預熱處理試驗................................36 3.2.2 經預熱處理之廢觸媒樣品酸焙燒試驗..........................37 3.2.3 酸焙燒後樣品浸漬試驗...................................37 3.2.4 經預熱處理廢觸媒樣品之直接浸漬試驗........................38 3.3 性質分析...............................................40 3.3.1 X光繞射分析(X-ray Diffraction, XRD)..................40 3.3.2 總有機碳分析(Total Organic Carbon Analyzer, TOC)......40 3.3.3 光學顯微鏡分析(Optical Microscope, OM)................40 3.3.4 原子吸收光譜分析(Atomic Absorption Spectrophotometer, AA) ..........................................................41 第四章 結果與討論............................................42 4.1 廢觸媒原樣預熱處理實驗....................................42 4.1.1 加熱損失量之變化.......................................42 4.1.2 總有機碳含量之變化.....................................44 4.1.3 廢觸媒礦物相之變化.....................................45 4.2 經預熱處理廢觸媒之酸焙燒試驗...............................48 4.2.1 預熱處理溫度及時間對浸出效率的影響........................48 4.2.2 助熔劑劑量對浸出率的影響................................54 4.2.3 酸焙燒時間對浸出率的影響................................57 4.2.4 酸焙燒溫度對浸出率的影響................................60 4.2.5 浸漬液硫酸濃度對浸出率的影響.............................64 4.2.6 浸漬液溫度對浸出率的影響................................68 4.2.7 浸漬液時間對浸出率的影響................................71 4.2.8 廢觸媒樣品直接酸浸漬...................................74 4.2.9 廢觸媒樣品酸焙燒礦物相之變化.............................77 4.2.10 廢觸媒樣品酸焙燒、直接酸浸漬與鹼焙燒之比較................78 第五章 結論................................................80 參考文獻...................................................82

    1.賴怡潔. 熱處理技術應用於煉油工業廢觸媒資源化:多環芳香烴化合物控制之研究. 生物環境工程學系 (中原大學).
    2.郭松雄. 本廠觸媒性能評價系統研究(1) 加氫脫硫觸媒性能評估. (經濟部研究發展專題, 1983).
    3.Angelidis T.N., Tourasanidis E., Marinou E., Stalidis G.A. Selective Dissolution of Critical Metals from Dissel and Naptha Spent Hydrodesulfurization Catalysts. Resources conservation and recycling, 13, 269-282, 1995.
    4.張國慶. 廢觸媒資源化技術與福誼公司資源化成果. (環保產業雙月刊, 台北, 第31期, 第8~9頁, 2005).
    5.Sun D.D., Tay J.H., Cheong H.K., Leung D.L.K., Qian G.R. Recovery of Heavy Metals and Stabilization of Spent Hydrotreating Catalyst Using A Glass Creamic Matrix. Journal of Hazardous Materials, 87, 213-223, 2001.
    6.Marafi M., Stanislaus A. Studies on Rejuvenation of Spent Residue Hydroprocessing Catalysts by Leaching of Metal Foulants. Journal of Molecular Catalysis A-Chemical, 202, 117-125, 2003.
    7.謝榮輝. 石油工業界之新寵兒—重油觸媒裂解. (石油, 第21卷, 第4期, 第34~57頁, 1985).
    8.胡興中. 煉油廠煤裂製程廢觸媒再利用之探討. (石油季刊, 第31卷, 第1期, 第1~13頁, 1995).
    9.陳宗輝. 石油工業廢觸媒資源化之研究. 環境與安全工程技術研究所 (雲林科技大學, 1998).
    10.曾鋆生. 石油工業廢觸媒作為波索蘭材料之可行性研究. 化學研究所 (台灣師範大學, 2001).
    11.徐文慶等人. ROC廢觸媒資源化利用. (第四屆工業減廢技術與策略研討會論文集, 第335~355頁, 1994).
    12.古晏菁. 廢觸媒資源化技術介紹與評析. (環保資訊, 第30期, 第29~36頁, 1999).
    13.薛文慶. 廢觸媒去除水中重金屬之研究. 環境工程與科學系研究所 (嘉南藥理科技大學, 2004).
    14.大英百科全書.
    15.邱信凱. 鎳金合金奈米粒子之製備與特性研究. 化學工程研究所 (國立成功大學, 2003).
    16.王炫仁. 鎳核/金殼及鎳核/銀殼複合奈米粒子之製備. 化學工程研究所 (國立成功大學, 2000).
    17.Fletcher P.D.I., Howe A.M., Robsin B.H. The Kinetics of Solubilisate Exchange between water droplets of a water-in-oil microemulsion. J. Chem. Soc. Faraday Trans, 83, 985-1006, 1987.
    18.陳家鏞等人. 濕法冶金的研究與發展. (冶金工業發行, 1998).
    19.蘇英源. 郭金國. 冶金學. (全華科技圖書股份有限公司, 第2-11~2-14頁, 2001).
    20.林偉凱. 蔡潔娃. 金屬資源再生技術發展概況分析. (財團法人金屬工業研究發展中心, 台北, 第10-12頁, 2009).
    21.蘇青森. 儀器學. (五南圖書出版股份有限公司, 台北, 第77~78頁, 第165~200頁, 第367~370頁, 2002).
    22.許樹恩. 吳泰伯. X光繞射原理與材料結構分析. (中國材料學學會, 1996).
    23.Ward V. C. Meeting environmental standards when recovering metals from spent catalyst. Journal of Metals, 41, 54-55, 1989.
    24.Rastas J.K., Karpale K.J., Tiitinen H. Recovery of metal values from spent catalysts used in extracting sulphur from crude petroleum. Belgian Pat. No. 894678, 1983.
    25.Lee F.M., Knudsen R.D., Kidd D.R. Reforming catalyst made from the metals recovered from spent atmospheric residue of desulphurization catalyst. Industrial & Engineering Chemistry Research, 31, 487-490, 1992.
    26.Ivam M.V.Jr., Jessica F.P., Julio C.A. Hydrometallurgical route to recover molybdenum , nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium. Journal of Hazardous Materials, 160, 310-317, 2008.
    27.Angelidis T.N., Tourasanidis E., Marinou E., Stalidis G.A. Selective dissolution of critical metals from diesel and naptha spent hydrodesulphurization catalysts. Resources, Conservation and Recycling, 13 269-282, 1995.
    28.Jocker J.S.M. The Metrex process, full recycling of spent hydroprocessing catalysts. Symposium on Regeneration, Reactivation and Reworking of Spent Catalysts. 205th National Meeting, American Chemical Society, Denver, CO, March 28-April 2, 77-80, 1993.
    29.Suzuki, Gao S.L. Recovery of valuable metals in spent heavy oil hydrodesulphurization catalyst. Japanese Pat. No. 57082122, 1982.
    30.Kim H.I., Park K.H., Mishra D. Sulfuric acid baking and leaching of spent Co-Mo/Al2O3 catalyst. Journal of Hazardous Materials, 166, 1540-1544, 2009.
    31.Kim H.I., Park K.H., Mishra D. Influence of sulfuric acid baking on leaching of spent Ni-Mo/Al2O3 hydro-processing catalyst. Hydrometallurgy, 98, 192-195, 2009.
    32.Mihashi T., Motomura H., Takeuchi H. Recovering processes of valuable metals from spent petroleum hydrodesulphurization catalysts. Japanese Pat. No.57022119, 1982.
    33.Ho E.M. Recovery of metals from spent catalysts. Murdoch University, Perth, Australia, 1992.
    34.Hyatt D.E. Value recovery from spent alumina-base catalyst. US Pat. No. 4657745, 1987.
    35.Grzechowiak J., Grysiewicz W., Ostrowski A., Radomyski B., Walendziewski J. Recovery of aluminium, cobalt, iron and nickel from used catalysts containing metals of ferrous group and possibly molybdenum on alumina support. Polish Pat. No. 136713, 1987.
    36.Siemens R.E., Jong B.W., Russell J.H. Potential of spent catalysts as a source of critical metals. Conservation and Recycling, 9, 89-96, 1986.
    37.Ward V.C. Meeting environmental standards when recovering metals from spent catalyst. Journal of Metals, 41, 54-55, 1989.
    38.張人權. 以硫酸化焙燒處理含鎳廢觸媒(藍泥)資源化回收之研究. 資源工程學系 (國立成功大學, 第9頁, 2012).
    39.Mingyu W., Xuewen W. Extraction of molybdenum and nickel from carbonaceous shale by oxidation roasting, sulphation roasting and water leaching. Hydrometallurgy, 102, 50-54, 2010.
    40.Roberto G.B., Natalia G.B., Gustavo N.S., Julio C.A. Processing of spent NiMo and CoMo/Al2O3 catalysts via fusion with KHSO4. Journal of Hazardous Materials, 139, 391-398, 2007.
    41.Park K.H., Reddy B.R., Mohapatra D., Nam C.W. Hydrometallurgical processing and recovery of molybdenum trioxide from spent catalyst. Journal of Mineral Processing, 80, 261-265, 2006.
    42.Toda S. Alkaline roasting of spent catalyst containing molybdenum and vanadium, Journal of the Mining and Materials Processing, 105, 261-264, 1989.

    下載圖示 校內:2018-07-22公開
    校外:2018-07-22公開
    QR CODE