| 研究生: |
范建翔 Fan, Chien-Hsiang |
|---|---|
| 論文名稱: |
可調性光導率於包覆銀奈米粒子多孔性陽極氧化鋁之研究 Tunable Photoconductivity of Porous Anodic Aluminum Oxide with Silver Nanoparticles |
| 指導教授: |
崔祥辰
Chui, Hsiang-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 電化學沉積 、多孔性陽極氧化鋁 、孔洞尺寸效應 、孔洞間距效應 、局域性表面電漿共振 、光致導電率 |
| 外文關鍵詞: | electrochemical deposition, anodic aluminum oxide, 2D silver nanoparticles array, photoconductivity, localized surface plasmon resonance, photo-induced electrical conduction, pore size, inter-pore spacing, absorption spectrum |
| 相關次數: | 點閱:190 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用電化學沉積製備具包覆銀奈米粒子陣列之多孔性陽極氧化鋁,可完成具有光致導電率功能的二維薄膜,並應用於光開關元件中。當選擇合適的激發光源入射至此薄膜,可激發其上銀奈米粒子之局域性表面電漿共振效應,使得二維銀奈米粒子陣列之多孔性氧化鋁具有導電能力,且其導電率與激發光源之功率大小及激發波段存在著一高度相依性。
在本論文中,我們延續了羅本超學長的實驗,進一步探討包覆銀奈米粒子之多孔性陽極氧化鋁薄膜之孔洞尺寸效應與孔洞間距效應對於光致導電率之影響,期望發展出一具波長可調之光致導電率增強薄膜。藉由改變多孔性陽極氧化鋁之製程參數,如陽極氧化電壓與擴孔時間,可控制多孔性氧化鋁薄膜上孔洞間距與孔洞大小,進而成長出具不同直徑大小與空間分布之銀奈米粒子陣列。具備不同粒子直徑與間距的銀奈米粒子二維陣列,其於吸收光譜上之局域性表面電漿共振的行為也會不同。利用此光學特性,我們可以有效的製備出符合我們想要的工作範圍之光致導電率增強薄膜,完成一具可調性之光開關元件。
The dielectric porous anodic aluminum oxide films (AAO) with embedded two-dimensional (2D) silver nanoparticles array have been fabricated by electrochemical deposition. There are have the function of photo-induced conductivity and can be apply to the optical photon switching. When an appropriate laser light source is emitted to the 2D Ag anoparticles array of AAO films, the localized surface plasmon resonance (LSPR) is excited. The dielectric AAO films with embedded 2D Ag nanoparticles thus exhibit the conductivity, is called the photoconductivity, which has the high dependence of laser wavelength and laser power.
In this thesis, we follow the experiment which arried out by Ben-Chao Lau. The experiment proves the photo-induced electrical conduction can be achieved by pours anodic aluminum oxide with embedded silver nanowires (Ag/AAO). Here, we will change the pore diameter and inter-pore spacing to investigate the influence of photocurrent and photoconductivity of Ag/AAO substrate. By changing the pore size and inter-pore distance, the absorption spectrum of these substrates can expect the phenomenon for the plasmon resonance peak appear shifting and broadening. The diameter of pores can changed with different etching time, and the distance of inter-pore also can be controlled by applying the different anodic voltage. Thus, we can fabricate many varied Ag/AAO films and measuring photocurrent at different condition. Therefore, we expecting these varied Ag/AAO films have ability for developing a high tolerance and tunable wavelength of optical photon switching base on the Ag/AAO film.
[1.01] H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006)
[1.02] T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[1.03] T. Atay, J.-H. Song, and A. V. Nurmikko, Strongly interacting plasmon nanoparticle pairs: From dipoledipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004)
[1.04] C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[1.05] H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv Mater 18, 491-+ (2006).
[1.06] Hache, F., Ricard, D. & Flytzanis, C. Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects. J. Opt. Soc. Am. B 3, 1647–1655 (1986)
[1.07] Haglund, R. F. et al. Picosecond nonlinear optical response of a Cu:silica nanocluster composite. Opt. Lett. 18, 373–375 (1993)
[1.08] Wang, W. T. et al., “Resonant absorption quenching and enhancement of optical nonlinearity in Au : BaTiO 3 composite films by adding Fe nanoclusters”, Appl. Phys. Lett. 83, 1983–1985 (2003)
[1.09] Dalacu, D. & Martinu, L., “Temperature dependence of the surface plasmon resonance of Au/SiO2 nanocomposite films”, Appl. Phys. Lett. 77, 4283–4285 (2000)
[1.10] Dhara, S. et al., “Quasiquenching size effects in gold nanoclusters embedded in silica matrix”, Chem. Phys. Lett. 370, 254–260 (2003)
[1.11] Ben-Chao Lau, “Photo-induced Electrical Conduction of Porous Anodic Aluminum Oxide Films Embedded with Silver Nanoparticles”, National Cheng Kung University, Institute of Microelectronics, Master Thesis (2010)
[1.12] Chen-Han Huang, Hsing-Ying Lin, Ben-Chao Lau, Chih-Yi Liu, Hsiang-Chen Chui, and Yonhua Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays”, OPTICS EXPRESS, Vol. 18, No. 26, 27891 (2010)
[1.13] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, "Photosensitive gold-nanoparticle-embedded dielectric nanowires," Nat Mater 5, 102-106 (2006).
[1.14] C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, "Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires," Nano Lett 8, 3081-3085 (2008).
[2.01] D. A. Schultz, “Current Opinion in Biotechnology”, 14, 13 (2003)
[2.02] http://en.wikipedia.org/wiki/Lab-on-a-chip.
[2.03] J. R. Sculllly and R. G.. Kelly, Corrosion-NACE, Vol.42, 537 (1986)
[2.04] Di Ma,, Shuying Li and Chenghao Liang, “Electropolishing of high-purity aluminium in perchloric acid and ethanol solutions”, Corrosion Science, 51, 713–718 (2009)
[2.05] P. A. Jacquet, Metal. Finishing 47, No.5, 48; No.6, 83 (1949)
[2.06] J. Huo, R. Solanki, J. McAndrew, “Electrochemical polishing of copper for microelectronic applications,” Surf. Eng., 19, 11–16 (2003)
[2.07] Bengough, G. D.; Stuart, J. M. Brit. Patent, 223,994 (1923)
[2.08] Saito, M.; Kirihara, M.; Taniguchi, T.; Miyagi, M. Appl. Phys. Lett, 55, 607 (1989)
[2.09] Akihiro Sato, Yan Pennec, Nitin Shingne, Thomas Thurn-Albrecht, Wolfgang Knoll, Martin Steinhart, Bahram Djafari-Rouhani, and George Fytas “Tuning and Switching the Hypersonic Phononic Properties of Elastic Impedance Contrast Nanocomposites,” Nano Letter 4, 6, 3471-3481 (2010)
[2.10] F. Li, L. Zhang, and R. M. Metzger, "On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide," Chemistry of Materials, 10, 2470-2480 (1998)
[2.11] Y. Li, "Fabrication of highly ordered nanoporous alumina films by stable high-field anodization," Nanotechnology, 17, 5101 (2006)
[2.12] S. Z. Chu, K. Wada, S. Inoue, M. Isogai, and A. Yasumori, "Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubule arrays by high-field anodization," Adv Mater 17, 2115 (2005)
[2.13] V. P. Parkhutik and V. I. Shershulsky, "Theoretical Modeling of Porous Oxide-Growth on Aluminum," J Phys D Appl Phys, 25, 1258-1263 (1992)
[2.14] O. Jessensky, F. Muller, and U. Go¨sele “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett., Vol. 72, No. 10, 9 March 1998
[2.15] Kathrin Schwirn, Woo Lee, Reinald Hillebrand, Martin Steinhart, Kornelius Nielsch, and Ulrich Gösele “Self-Ordered Anodic Aluminum Oxide Formed by H2SO4 Hard Anodization,” ASC NANO, vol 2, no 2, 302-310 (2008)
[2.16] H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution," Jpn J Appl Phys 2 37, L1340-L1342 (1998)
[2.17] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50--420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics 84, 6023-6026 (1998)
[2.18] Shingubara, Shoso; Okino, Osamu; Sayama, Yasuyuki; Sakaue, Hiroyuki; Takahagi, Takayuki “Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum,” Japanese Journal of Applied Physics, vol. 36, issue Part 1, No. 12B, pp. 7791-7795 (1997)
[2.19] C. Y. Liu, A. Datta, N. W. Liu, C. Y. Peng, and Y. L. Wang, “Order-Disorder Transition of Anodic Alumina Nanochannel Arrays Grown Under the Guidance of Focused-Ion-Beam Patterning,” Appl. Phys. Lett., Vol. 84, 2509 (2004)
[2.20] Shingubara S., Y. Murakami, K. Morimoto, H. Sakaue, and T. akahagi,“Formation of Al Nanodot Array by the Combination of Nano-Indentation and Anodic Oxidation,” Mat. Res. Soc. Symp. Proc., Vol. 705, 133 (2002)
[2.21] Masuda H., H. Yamada, M. Saitoh, H. Asoh, M. Nakao, and T. Tamamura,“Highly Ordered Nanochannel-Array Architecture in Anodic Alumina,” Appl. Phys. Lett., Vol. 71, 2770 (1997)
[2.22] H. Chik, J. M. Xu, “Nanometric superlattices: non-lithographic fabrication, materials, and prospects,” Materials Science and Enfgineer: R, 43, 103 (2004)
[2.23] T. Goodson III, O. Varnavski, and Y. Wang, “Optical properties and applications of dendrimer-metal nanocomposites” Int. Rev. Phys. Chem. 23, 109 (2004)
[2.24] Y.H. Cheng, S.Y. Cheng, “Nanostructures formed by Ag nanowires,” Nanotechnology, 15, 171 (2004)
[2.25] Walsh, R. J.; Chumanov, G., “Silver Coated Porous Alumina as a New Substrate for Surface-Enhanced Raman Scattering,” Appl. Spectrosc, 55, 1695 (2001)
[2.26] A.J. Haes, S.L. Zou, G.C. Schatz, R.D. Van Duyne, “Nanoscale Optical Biosensor - Short Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” J. Phys. Chem. B, 108, 6961 (2004)
[2.27] Y. Cui, C.M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science, 291, 851 (2001)
[2.28] Choi, G. Sauer, K. Nielsch, R. B. Wehrspohn, and U. Gosele, "Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio," Chemistry of Materials, 15, 776-779 (2003)
[2.29] Chun-Guey Wu Æ Hu Leng Lin Æ Nai-Ling Shau, “Magnetic nanowires via template electrodeposition,” J Solid State Electrochem, 10,198–202 (2006)
[2.30] H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps," Adv Mater 18, 491 (2006)
[2.31] http://en.wikipedia.org/wiki/Cyclic_voltammetry
[2.32] X. Y. Sun, F. Q. Xu, Z. M. Li, and W. H. Zhang, "Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template," Mater Chem. Phys., 90, 69-72 (2005)
[3.01] D. A. Schultz, “Current Opinion in Biotechnology”, 14, 13 (2003)
[3.02] Ben-Chao Lau, “Photo-induced Electrical Conduction of Porous Anodic Aluminum Oxide Films Embedded with Silver Nanoparticles”, National Cheng Kung University, Institute of Microelectronics, Master Thesis (2010)
[3.03] Heinz Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, Springer-Verlag Berlin Heidelberg New York (1988)
[3.04] H. Raether, Surface Plasmons, Springer-Verlag, Berlin, 1988
[3.05] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons”, Phys. Reports 408, 131 (2005)
[3.06] Hsing-Ying Lin, “Direct Detection of C-reactive Proteins in Human Serum Using Surface Plasmon Resonance Biosensing”, National Cheng Kung University, Institute of Biomedical Engineering, Master Thesis (2006)
[3.07] 邱國斌 and 蔡定平, "金屬表面電漿簡介," 物理雙月刊 28, 472-485 (2006)
[3.08] K. Berthold, R. A. Hopfel, and E. Gornik, "Surface-Plasmon Polariton Enhanced Photoconductivity of Tunnel-Junctions in the Visible", Appl Phys Lett 46, 626-628 (1985)
[3.09] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review”, Sens. Actuators B 54, 3 (1999)
[3.10] K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing”, Annu. Rev. Phys. Chem. 58, 267–297 (2007)
[3.11] Eliza Hutter and Janos H. Fendler, “Exploitation of Localized Surface Plasmon Resonance”, Adv. Mater., 16, 19 (2004)
[3.12] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983)
[3.13] U. Kreibig and M. Vollmer, Optical Poperties of Metal Clusters, Springer Series in Material Science Vol. 25 (Springer Verlag, Berlin, 1995)
[3.14] Kottmann and O. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8(2001)
[3.15] Sujit Kumar Ghosh and Tarasankar Pal, “Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications”, Chem. Rev., 107, 4797-4862 (2007)
[3.16] S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles", J Phys Chem B 103, 4212-4217 (1999)
[4.01] F. Li, L. Zhang, and R. M. Metzger, "On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide," Chemistry of Materials, 10, 2470-2480 (1998)
[4.02] K. Nielsch, F. Müller, A. P. Li, U. Gösele, Adv. Mater. 12 (2000) 582
[4.03] J. Liang, H. Chik, J. Xu, IEEE J. Sel. Top. Quantum Electron. 8(5) (2002) 998
[4.04] Dr. rer. nat., “Electrochemical deposition of Cobalt, Nickel-Cobalt, Nickel-Copper and Zinc-Nickel nanostructured materials on aluminum by template self-organization”, 2007
[4.05] Ben-Chao Lau, “Photo-induced Electrical Conduction of Porous Anodic Aluminum Oxide Films Embedded with Silver Nanoparticles”, National Cheng Kung University, Institute of Microelectronics, Master Thesis (2010)
[5.01] J. A. Creighton, and D. G. Eadon, “Ultraviolet-visible absorption spectra of the colloidal metallic elements,” J. Chem. Soc., Faraday Trans. 87(24), 3881–3891 (1991)
[5.02] S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles", J Phys Chem B 103, 4212-4217 (1999)
[5.03] M. S. Son, J. E. Im, K. K. Wang, S. L. Oh, Y. R. Kim, and K. H. Yoo, “Surface plasmon enhanced photoconductance and single electron effects in mesoporous titania nanofibers loaded with gold nanoparticles,” Appl. Phys. Lett. 96(2), 023115 (2010)
[5.04] H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
[5.05] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires,” Nat. Mater. 5(2), 102–106 (2006)
[5.06]C.-H. Hsieh, L.-J. Chou, G.-R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8(10), 3081–3085 (2008)
校內:2021-12-31公開