簡易檢索 / 詳目顯示

研究生: 孫華偉
Sun, Hua-Wei
論文名稱: 影像伺服自動操縱液體環境中之微粒子
Visual-Servo Automatic Manipulation of Micro Particles in Liquid Environment
指導教授: 張仁宗
Chang, Ren-Jung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 103
中文關鍵詞: 自動微操縱影像伺服定位自動聚焦小波熵RES
外文關鍵詞: automatic micromanipulation, visual-servo locating, autofocus, wavelet entropy, RES
相關次數: 點閱:92下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用本實驗室長期發展之聚氨基甲酸乙酯(polyurethane, PU)微型夾爪技術,完成一由壓電材料致動之微形夾持器系統並改善夾持器與機器手臂安裝困難的問題。夾持器增加手動微調機構,使微夾爪組裝完仍能微調夾爪開口大小。完成自動操縱系統的夾持設備硬體需求後,再利用影像伺服系統,發展系統自動化圖形識別定位,並以RES(Regional Edge Statistics with multiple sub-domain)影像演算法之核心概念配合小波理論的優勢,提出以小波熵作為聚焦函數,最後成功的實現三維空間中自動聚焦與影像伺服定位控制直徑 的微粒子傳輸與放置之自動化應用實例,以便未來應用於生物醫學相關之微粒子操縱。

    The present research is to implement a micromanipulating system by using a piezoelectronic actuated micro gripper module, which applying the PU micro gripper technique researched by OME lab for a decade. A fine-tuning mechanism is added to improve the installation problem between manipulator and robotic arm. By this design, we can also tune the opening size of gripper. After completing hardware requirements of gripping device for automatic micromanipulating system, an automatic positioning system by utilizing pattern recognition in visual-servo algorithm is developed. A focus function “Wavelet Entropy” is proposed to incorporate with wavelet method and RES(Regional Edge Statistics with multiple sub-domain) method for the autofocusing and visual-servo operation. Finally, automatic transporting and manipulating of microparticles with size around 10~100μm in 3-D workspace employing the visual-servo locating and micromanipulating autofocusing techniques is implemented and tested. In the future, we will apply the present research to microparticles manipulation in biomedical research.

    摘要 I Abstract II 致謝 III 目錄 III 表目錄 VII 圖目錄 VIII 符號表 XII 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 1 1-2.1 聚焦函數相關文獻 1 1-2.2 微操縱相關文獻回顧 3 1-3 研究目標與方法 8 1-4 本文架構 9 第二章 微夾持系統 10 2-1 微夾持器 10 2-2 手動微調機構 14 2-3 夾持器與機器手臂連結方式改良 15 2-4 機械臂操作 18 2-5 本章總結 19 第三章 自動對焦 20 3-1 自動聚焦演進 21 3-2 自動聚焦系統硬體架構 21 3-3 搜尋策略 24 3-3.1 全域搜尋策略(Scan-All Strategy) 24 3-3.2 二分法尋策略(Bisection Search) 25 3-3.3 來回搜尋策略(Refocus strategy) 26 3-4 建立於小波轉換之聚焦函數(Focus Function) 27 3-4.1 聚焦函數特性 27 3-4.2 常用聚焦函數 28 3-4.3 影像熵 31 3-4.4 小波能量 33 3-4.5 小波熵 36 3-4.6 訊號雜訊比 39 3-4.7 聚焦精度 40 3-5 聚焦函數比較結果與討論 41 3-5.1 小波熵與常用聚焦函數比較 41 3-5.2 小波熵與其他小波聚焦函數比較 42 3-6 本章總結 44 第四章 影像伺服定位 46 4-1 小波邊緣偵測提取 46 4-1.1 小波轉換提取夾爪邊緣 47 4-1.2 閥值選擇與二值化影像分割 49 4-2 影像定位演算法 50 4-2.1 樣板比對法 51 4-2.2 複雜度定義 54 4-2.3 小波提取邊緣特徵樣板比對法 58 4-2.4 多重區域邊緣統計法 59 4-3 物件追蹤與位置估測器 61 4-4 影像伺服建模 64 4-5 控制器設計 68 4-6 本章總結 71 第五章 系統整合與測試 73 5-1 系統整合 73 5-2 實現自動聚焦 76 5-3 實現影像伺服追蹤 78 5-4 實現夾爪控制器 79 5-5 自動化操縱 80 5-5.1 目標臨近與自動聚焦 81 5-5.2 粒子夾持 85 5-5.3 提昇、運輸、下移、釋放 86 5-6 本章總結 90 第六章 結論與未來展望 91 6-1 結論 91 6-2 未來展望 91 參考文獻 93 附錄A步進馬達與驅動電路 96 附錄B介面卡技術資料 99 附錄C微夾持器系統規格 102 自述 103

    [1]Groen F, Young IT, Ligthart G. ”A comparison of different focus functions for use in autofocus algorithms”. Cytometry 12:81–9,1985.
    [2]Firestone L, Cook K, Culp K, Talsania N, Preston K. ”Comparison of autofocus methods for automated microscopy”. Cytometry 12:195–206, 1991.
    [3]Subbarao M, Choi TS, Nikzad A. “Focusing techniques”. J Opt Eng 32:824–2836,1993.
    [4]Yeo T, Jayasooriah SO, Sinniah R. ”Autofocusing for tissue micro-
    scopy”. Image Vis Comput 11:629–639 ,1993.
    [5]Santos A, Solorzano CO, Vaquero JJ, JM, Malpica N, Pozo F.
    “Evaluation of autofocus functions in molecular cytogenetic analysis”. J Microsc 188:264–272,1997.
    [6]Yang G, Nelson BJ. ”Wavelet-based auto-focusing and unsupervised segmentation of microscopic images”. Proc IEEE/RSJ International Conference on Intelligent Robots and Systems 2143–2148,2003.
    [7]Yang G, Nelson BJ. ”Micromanipulation contact transition
    control by selective focusing and microforce control”. Proc IEEE
    International Conference on Robotics and Automation 3200–3206, 2003.
    [8]Hui Xie, Weibin Rong, And Lining Sun. “Construction and Evaluation of a Wavelet-Based Focus Measure for Microscopy Imaging” Microscopy Research And Technique 70:987–995,2007).
    [9]Hulsen H, Truper T, Fatikow S. “Control System for the automatic Handling of biological Cells with mobile Microrobots”, Proc. American Control Conference (ACC'04), Boston, MA, U.S.A., July 2004, pp.3986-3991
    [10]Sulzmann A, J. M. Breguet and Jacot J, “Micromotor Assembly Using High Accurate Optical Vision Feedback For Microrobot Relative 3D Displacement In Submicron Range,” Proceedings of the IEEE International Conference on Solid-State Sensors and Actuators, Vol.1, Pages: 279-282, June 1997.
    [11]Carrozza M.C, Dario P, Menciassi A and Fenu A, “Manipulating Biological and Mechanical Micro-Objects Using LIGA-Microfabricated End-Effectors,” Proceedings of the IEEE International Conference on Robotics & Automation, Vol.2, Pages: 1811-1816, May 1998.
    [12]Beyeler F, “Design of a Micro-Gripper and an Ultrasonic Manipulator for Handling Micron Sized Objects,”International Conference on Intelligent Robots and Systems, IEEE, pp.772-777, 2006.
    [13]Keekyoung K, ”MicroNewton Force-Controlled Manipulation of Biomaterials Using a Monolithic MEMS Microgripper with Two-Axis Force Feedback,” International Conference on Robotics and Automation, IEEE, pp. 3100-3105, 2008.
    [14]Li X, Zong G and Bi S, “Development of Global Vision System for Biological Automatic Micro-Manipulation System,” Proceedings of the IEEE International Conference on Robotics and Automation, Vol.1, Pages: 127-132, May 2001.
    [15]Yamamoto H and Sano T, “Study of Micromanipulation Using Stereoscopic Microscope,” IEEE Transaction on Instrumentation and Measurement, Vol.51, Pages: 182-187, April 2002.
    [16]Suzuki A, Arai T, Mae Y, Inoue K and Tanikawa T, “Automated Micro Handling,” Proc. of the IEEE Int. Symposium on Computational Intelligence in Robotics and Automation, Vol.1, Pages: 348-353, July 2003.
    [17]Korhonen P, Zhou Q, Laitinen J, and Sjovall S, “Automatic Dextrous Handling of Micro Components Using a 6 DOF Microgripper,” Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2005, Finland.
    [18] K. B. Yesin and B. J. Nelson, “A CAD Model Based Tracking System for Visually Guided Microassembly,” J. of Robotica, Vol. 23, pp. 409-418, 2005.
    [19]Y. H. Anis, J. K. Mills, and W. L. Cleghorn, “Automated Microassembly Task Execution Using Vision-based Feedback Control,” Proceedings of the International Conference on Information Acquisition, IEEE, 2007.
    [20]R. J. Chang, and C. C. Chen, “Using Microgripper for Adhesive Bonding in Automatic Microassembly System,” ICMA, IEEE, China, 2007.
    [21]Otsu N, “A Threshold Selection Method from Gray-Scale Histogram, ” IEEE Trans. Systems, Man, and Cybernetics, Vol. 8, 1978, pp. 62-66.
    [22]吳政達, “ 虛擬場景輔助進給與操縱遠端液體環境中之微粒子” 國立成功大學機械工程學系碩士論文, June, 2009.
    [23] 許志成,“形狀記憶合金驅動具力量感測器微夾爪之閉迴路控制”,國立成功大學機械工程學系碩士論文,June,2007.
    [24]Ng Kuang, N., Poo Aun Neow, and Ang,M.H., Jr., “Practical Issues in Pixel-Based Autofocusing for Machine Vision,”Proceedings of the IEEE International Conference on Robotics and Automation,Vol.3, pp.2791-2796, 2001.
    [25]Baina J and Dublet J, “Automatic Focus and Iris Control for Video Cameras,” Fifth International Conference on Image Processing and its Applications, pp.232-235, 1995.
    [26]Matrox Electronic System Ltd. 2005. Matrox Inspector 8.0 user guide.
    [27]Adams A, “The Camera,” New York Graphic Society, Boston, 1980.
    [28]Nayar, S.K., and Nakagawa, Y., “Shape from Focus,” Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 4, No. 8, pp.824-831, August 1994.

    下載圖示 校內:2012-07-16公開
    校外:2012-07-16公開
    QR CODE