| 研究生: |
李尚展 Lee, Shang-Chan |
|---|---|
| 論文名稱: |
結合投入產出及生命週期評估分析台灣鋼鐵業環境與經濟之衝擊 Integrated Analysis of Input-Output Life Cycle Assessment:Case Study of Iron and Steel Industry |
| 指導教授: |
林素貞
Lin, Sue-Jane |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 鋼鐵業 、二氧化碳 、能源消費 、投入產出分析 、乘數 、投入產出生命週期評估 、SimaPro 7.3 |
| 外文關鍵詞: | Iron and steel sector, CO2, Energy consumption, Input-output analysis, Multiplier, Input-output life cycle assessment, SimaPro 7.3 |
| 相關次數: | 點閱:170 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年由於全球暖化議題受到相當大的重視,而二氧化碳是造成全球暖化最常見的溫室氣體,因此,大眾對傳統的耗能產業開始更加關注,而鋼鐵業就是其中的產業之一。本研究首先使用產業關聯分析探討台灣鋼鐵業在產業間的關聯性及二氧化碳排放與能源消費之情況,進一步,應用投入產出結合生命週期評估法分析台灣鋼鐵業在溫室效應及相關環境議題上之直接與間接衝擊。
由產業關聯分析結果,鋼鐵業在台灣整體經濟中扮演相當重要的角色,其向前、向後之產業關聯度在所有產業中高居前三位,可以看出鋼鐵業不僅提供大量產品給下游產業,亦帶動很多上游產業的生產,對整體產業有相當的支撐及帶動的效果,因此鋼鐵業對台灣的經濟貢獻相當的大。另外,鋼鐵業使用的能源主要為媒,所以排放了大量的CO2,其CO2排放以2006年為例,其排放量達2.22 tCO2,佔全部產業之8.7%。
根據SimaPro中的TRACI及IMAPCT 2002+的衝擊評估量化結果,顯示台灣鋼鐵業的主要環境衝擊為生態毒性及全球暖化,其中生態毒性是由於鋼鐵業產生了相對多的重金屬所造成;而全球暖化是因為在煉鋼及運鋼過程中排放過多CO2所致。因此,除了製程產出的污染物改善外,可嘗試由供應鏈與原料端來進行改善,在物料管理時,需要加強環境監測與鼓勵鋼廠汰舊換新。此外,在未來,需要進一步改善能源燃料結構及能源效率,且增加更多高附加價值產出,才可在經濟發展的同時兼顧到環境的永續。
In recent years, the iron and steel companies in some countries have paid more attention to energy-saving and high-efficiency processes for steel manufacture because of environmental awareness around the globe. It is clear that the iron and steel sector is a power-intensive industry that contributes large amounts of greenhouse gas emissions. The first part of this study uses industrial linkage analysis to explore the economic relationship of each sector with the iron and steel sector in Taiwan. Then, the second part uses input-output life cycle assessment to analyze the environmental burden resulting from direct and indirect linkage effect.
The iron and steel sector plays an important role in supporting and promoting other industries according to the results of the sensitivity index and the power index of dispersion, both values are larger than the average. Thus, the iron and steel sector is one of the significant contributors to Taiwan's economic activities. Since coal plays a key role for energy use of the iron and steel sector, but it releases a lot of CO2 that contributes to climate warming. Therefore, it is critical to shift energy structure in order to improve the efficiency and structure of energy use, and to increase the productivity of high value-added products.
Finally, the main environmental issues are eco-toxicity and global warming according to TRACI and IMPACT 2002+ SimaPro models results. Along this line, companies of the iron and steel sector and associated sectors have to generate more awareness of the environmental consequence and damage, and the government must develop stronger environmental policy framework to guard the environment and the quality of people’s life; since the iron and steel sector not only affects the industrial economics significantly, but it also causes severe environmental impacts. Therefore, besides improving process pollutants and enhancing the monitor programs, the industry can improve the supply chain and raw material side as well. Moreover, the government should encourage the iron and steel sector to replace old mills with green factories, as well as to improve the fuel structure and increase of high value-added product.
1.Alcántara, Vicent, & Padilla, Emilio. (2009). Input–output subsystems and pollution: An application to the service sector and CO2 emissions in Spain. Ecological Economics, 68(3), 905-914. doi: 10.1016/j.ecolecon.2008.07.010
2. Alverbro, K., Bjorklund, A., Finnveden, G., Hochschorner, E., & Hagvall, J. (2009). A life cycle assessment of destruction of ammunition. Journal of Hazardous Materials, 170(2-3), 1101-1109. doi: DOI 10.1016/j.jhazmat.2009.05.092
3. Bilec, M.M., Ries, R.J., Matthews, H.S. (2010). Life-Cycle Assessment Modeling of Construction Processes for Buildings. Infrastructure systems, 199 - 205. doi: 10.1061//asce/is.1943-555x.0000022
4. Bjorklund, A. E., & Finnveden, G. (2007). Life cycle assessment of a national policy proposal - The case of a Swedish waste incineration tax. Waste Management, 27(8), 1046-1058. doi: DOI 10.1016/j.wasman.2007.02.027
5. Bureau of Energy, 2010. Taiwan Energy Balance Table - Year 2009. Bureau of Energy, Ministry of Economic Affairs, Taipei, Taiwan.
6. Chang, Y. A., Ries, R. J., & Wang, Y. W. (2010). The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model. Energy Policy, 38(11), 6597-6603. doi: DOI 10.1016/j.enpol.2010.06.030
7. China steel company, (2012). The Corporate Social Responsibility of China steel company.
8. Consultants, PRé. (2011). SimaPro 7.3 Introduction to LCA.
9. Huang, C.Y., (2003). The life cycle assessment of the man-made fiber products. . Master thesis, National Cheng Kung University (in Chinese).
10.Directorate-General of Budget, Accounting and Statistics, 2004. Taiwan inter-industry input-output linkage table compilation - Year 2001. Executive Yuan, Taipei, Taiwan.
11.Directorate-General of Budget, Accounting and Statistics, 2007. Taiwan inter-industry input-output linkage table compilation - Year 2004. Executive Yuan, Taipei, Taiwan.
12.Directorate-General of Budget, Accounting and Statistics, 2009. Taiwan inter-industry input-output linkage table compilation - Year 2006. Executive Yuan, Taipei, Taiwan.
13.Guo, W. S. (2009). Combination of life cycle assessment with decomposition analysis case study of fossil power plant. Master thesis, National Cheng Kung University (in Chinese).
14.Han, S. Y., Yoo, S. H., & Kwak, S. J. (2004). The role of the four electric power sectors in the Korean national economy: an input–output analysis. Energy Policy, 32(13), 1531-1543. doi: 10.1016/s0301-4215(03)00125-3
15.Huang, J. F. (2004). The feasibility analysis to prevent the dioxin control technology. Industrial Pollution Control. No. 92 (in Chinese), 132 - 161.
16.Huang, Y., & Wu, J. (2008). Analysis of biodiesel promotion in Taiwan. Renewable and Sustainable Energy Reviews, 12(4), 1176-1186. doi: 10.1016/j.rser.2007.01.009
17.Humbert, Sébastien, Margni, Manuele, & Jolliet, Olivier. (2005). IMPACT2002+ UserGuide for v2.1 Draft October 2005.
18.Inoue, Y., & Katayama, A. (2011). Two-scale evaluation of remediation technologies for a contaminated site by applying economic input-output life cycle assessment: Risk-cost, risk-energy consumption and risk-CO2 emission. Journal of Hazardous Materials, 192(3), 1234-1242. doi: DOI 10.1016/j.jhazmat.2011.06.029
19.IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
20.ITIS Project Office, (2011). Status and trends of manufacturing industry.
21.Jane, C. B., Gregory A. N., David W. P., & McKone, and Thomas. (2003). The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts-TRACI. Industrial Ecology, 6, 49 - 78.
22.Yang, J. H.. (2000). Environmental management - the principle and structure of life cycle assessment. Center for Environmental Safety & Health Technology Development. (in Chinese).
23.Joshi, S. (2000). Product Environmental Life-Cycle Assessment Using Input-Output Techniques. Industrial Ecology, 95 - 120.
24.Junnila, Seppo. (2008). Life cycle management of energy-consuming products in companies using IO-LCA. The International Journal of Life Cycle Assessment, 13(5), 432-439. doi: 10.1007/s11367-008-0015-y
25.Koellner, T., Suh, S., Weber, O., Moser, C., Scholz, R.W. (2007). Environmental Impacts of Conventional and Sustainable Investment Funds Compared Using Input-Output Life-Cycle Assessment. Industrial Ecology, 11, 41 - 60.
26.Kwak, S. J., Yoo, S. H., & Chang, J. I. (2005). The role of the maritime industry in the Korean national economy: an input-output analysis. Marine Policy, 29(4), 371-383. doi: DOI 10.1016/j.marpol.2004.06.004
27.Lave, L. B., Cobras-Flores, E., Hendrickson, C. and McMichael, F. (1995). Using input-output analysis to estimate economy wide discharges. Environmental Science & Technology, 29, 420 - 426.
28.Lee, C. F., Lin, S. J., & Lewis, C. (2001). Devising an integrated methodology for analyzing energy used and CO2 emissions from Taiwan's petrochemical industries. Journal of Environmental Management, 63(4), 377-385. doi: DOI 10.1006/jema.2001.0479
29.Leontief, W., 1970. Environmental repercussions and the economic structure: an input-output approach. Review of Economics and Statistics 52, 262-271.
30.Leontief, W., 1986. Input-output economics, second ed. Oxford University Press, New York.
31.Li, J. M. (2006). The carbon dioxide emissions used decoupling indicators and evaluation in Taiwan. Taiwan Economic Forum. (in Chinese), 4, 1-24.
32.Li, J. H. (2005). The establishment of energy consumption per unit of product in iron and steel sector. Master thesis, National Cheng Kung University (in Chinese).
33.Li, P. B. (2010). Integrated analysis of input-output life cycle assessment with carbon footprint: case study of semiconductor insudtry. Master thesis, National Cheng Kung University (in Chinese).
34.Li, S. S., 2011. CO2 Emission Trends Analysis and Life Cycle Assessment for Iron and Steel Industry.
35.Liang, S., Zhang, T. Z., & Xu, Y. J. (2012). Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model. Waste Management, 32(3), 603-612. doi: DOI 10.1016/j.wasman.2011.10.020
36.Liang, Sai, Wang, Can, & Zhang, Tianzhu. (2010). An improved input–output model for energy analysis: A case study of Suzhou. Ecological Economics, 69(9), 1805-1813. doi: 10.1016/j.ecolecon.2010.04.019
37.Lin, S. J., & Chang, Y. F. (1997). Linkage effects and environmental impacts from oil consumption industries in Taiwan. Journal of Environmental Management, 49(4), 393-411. doi: DOI 10.1006/jema.1995.0119
38.Lin, S. J. (2012). CO2 Emission Multiplier Effects of Taiwan’s Electricity Sector by Input-output Analysis. Aerosol and Air Quality Research. doi: 10.4209/aaqr.2012.01.0006
39.Lin, S. J. (2009). Study of ectended model for evaluation sustainable development-an integrated app;ication of energy factor.
40.Lin, Y. R. (2007). Comparison and linkage analysis of energy, economy and CO2 emission among Taiwan and other countries. Master thesis, National Cheng Kung University (in Chinese).
41.Liou, G. H. (2004). The life cycle assessment of IC manufacturing. Master thesis, National Cheng Kung University (in Chinese).
42.Liou, G. H. (2011). CO2 Emission Characteristics and Power Generation Efficiency Analyses of the Electricity Sector in Taiwan. P.h. D. thesis, National Cheng Kung University.
43.Liu, C. H., Lin, S. J., & Lewis, C. (2012). Environmental Impacts of Electricity Sector in Taiwan by Using Input-Output Life Cycle Assessment: The Role of Carbon Dioxide Emissions. Aerosol and Air Quality Research, 12(5), 733-744. doi: DOI 10.4209/aaqr.2012.04.0090
44.Lyu, P. L. (2008). Trend and relation analysis of electricity consumption and CO2 emission. Master thesis, National Cheng Kung University (in Chinese).
45.Ministry of Economic Affairs, (2008). Sustainable energy policy programme.
46.Ministry of Economic Affairs, (2010). The manual book of policy assessment in iron and steel industry.
47.Miller, V. B., Landis, A. E., & Schaefer, L. A. (2011). A benchmark for life cycle air emissions and life cycle impact assessment of hydrokinetic energy extraction using life cycle assessment. Renewable Energy, 36(3), 1040-1046. doi: DOI 10.1016/j.renene.2010.08.016
48.Morrissey, K., & O'Donoghue, C. (2013). The role of the marine sector in the Irish national economy: An input-output analysis. Marine Policy, 37, 230-238. doi: DOI 10.1016/j.marpol.2012.05.004
49.Mu, T., Xia, Q., & Kang, C. Q. (2010). Input-output table of electricity demand and its application. Energy, 35(1), 326-331. doi: DOI 10.1016/j.energy.2009.09.024
50.Nassen, J., Holmberg, J., Wadeskog, A., & Nyman, M. (2007). Direct and indirect energy use and carbon emissions in the production phase of buildings: An input-output analysis. Energy, 32(9), 1593-1602. doi: DOI 10.1016/j.energy.2007.01.002
51.Norman, J., Charpentier, A.D., Maclean, H.L., 2007. Economic input-output life cycle assessment of trade between Canada and the United State. Environmental Science & Technology 41, 1523-1532.
52.Olivier Jolliet, Manuele Margni, Raphaël Charles, Sébastien Humbert, Jérôme Payet, Gerald Rebitzer and, & Rosenbaum, Ralph. (2003). IMPACT 2002+ A New Life Cycle Impact Assessment Methodology. Int J LCA, 8(6), 324 - 330.
53.Pérez Gil, Maylier, Contreras Moya, Ana M., & Rosa Domínguez, Elena. (2013). Life cycle assessment of the cogeneration processes in the Cuban sugar industry. Journal of Cleaner Production, 41, 222-231. doi: 10.1016/j.jclepro.2012.08.006
54.Ronald E. Miller, Peter D. Blair. (2009). Input output analysis foundations and extensions.
55.Fu, S. T., Wu, J. H., Chuang, Y. C., Tsai, C.W. (2009). STEEL Up Policy in Taiwan. (in Chinese). 11 - 20.
56.San Cristobal, J. R., & Biezma, M. V. (2006). The mining industry in the European Union: Analysis of inter-industry linkages using input-output analysis. Resources Policy, 31(1), 1-6. doi: DOI 10.1016/j.resourpol.2006.03.004
57.Sie, J. J. (2007). The real effort of Iron and steel making. Scientific development, 417.
58.Stavins, R. N. (2011). Assessing the Climate Talks - Did Durban succeed ?
59.Thomas Koellner, Sangwon Suh, Olaf Weber, Corinne Moser,, & Scholz, and Roland W. (2007). Environmental impacts of conventional and sustainable investment funds compared using input-output LCA. Industrial Ecology, 11, 41 - 60.
60.Troy Hawkins, Chris Hendrickson, Cortney Higgins, and H . Scott Matthews. (2007). A Mixed-Unit Input-Output Model foe Environmental LCA and Material Flow Analysis. Environ. Sci. Technol., 1024-1031.
61.Tuomas J. Mattila , Suvi Pakarinen, and Laura Sokka. (2010). Quantifying the total environmental impacts of an industrial symbiosis a comparison of process, hybrid and IO life cycle assessment. Environ. Sci. Technol., 4309-4314.
62.Ye, Z. J. (2012), CO2 Reduction Assessment for Steel Industry in Taiwan- Application of Time Series and Multi-objective models.
63.Worldsteel, Association. (2010). Life Cycle Inventory Database for Steel Industry Products-Policy Statement.
64.Worldsteel, Association. (2010). The three R's of sustainable steel.
65.Worldsteel, Association. (2011). Worldsteel providing the basis for LCA studies.
66.Worldsteel, Association. (2012). Global economic outlook and steel demand trends.
67.Worldsteel, Association. (2012). The steel industry in a sustainable society.
68.Worldsteel, Association. (2012). Sustainable Steel At the core of a green economy.
69.Chang, Y. F., Yu, Y. C., Yu, C. J., & Chang, C. F. and Wu, J. R.. (2006). Assessment and Analysis of CO2 Reduction for Steel Industry in Taiwan-An Application of Input-Output Structural Decomposition Method. Chia-Nan Annual Bulletin, 32, 82 - 97.
70.Yuan, C. Q., Liu, S. F., & Xie, N. M. (2010). The impact on chinese economic growth and energy consumption of the Global Financial Crisis: An input-output analysis. Energy, 35(4), 1805-1812. doi: DOI 10.1016/j.energy.2009.12.035
校內:2016-08-12公開