| 研究生: |
劉晉連 Liu, Chin-Lien |
|---|---|
| 論文名稱: |
限額導向之交錯式輪詢適應性週期演算法:乙太被動式光纖網路上支援服務品質傳輸的延遲限制機制 QUota-Oriented Interleaved Polling with Adaptive Cycle Time (QUIPACT):A Delay-Constrained Scheme for QoS Support in EPONs |
| 指導教授: |
林輝堂
Lin, Hui-Tang |
| 共同指導教授: |
何裕琨
Ho, Yu-Kun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 三合一整合型網路服務 、即時性 、延遲變量 、延遲上限 |
| 外文關鍵詞: | triple-play services, real-time, jitter, delay bound |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文針對在目前接取網路中新興的三合一整合型網路服務,提出了一個延遲限制的服務品質保證頻寬分配演算法。本演算法採用一個固定傳輸訊框方法使得即時性服務可在每一個傳輸訊框中去保留足夠的頻寬,藉此來滿足即時性服務所需求的傳輸品質,如延遲變量或延遲上限保證等。如此本演算法就能提供即時性資料有更好的傳輸品質保證。此外,本演算為了防止飢餓現象發生在盡量服務的資料傳輸上,因此在每一個傳輸訊框中保留最小頻寬使得盡量服務的資料不會因為即時性資料而無限延遲傳輸,使得延遲時間大幅上升。再者,本演算可以針對網路上不同使用者的回報需求,動態地調整即時性資料和盡量服務的傳輸界線位置,使之更可以有效地利用頻寬,提高頻寬的使用率。最後,電腦模擬結果顯示出本演算法比起其他的服務品質演算法,在產能、延遲變量以及延遲上限的保證中,皆能呈現較好的效能成果。
This thesis proposes a Delay-Constrained Scheme for supporting the triple-play services in EPON networks. The proposed scheme adopts a fixed frame approach. In each frame, a mechanism is provided to enable real-time traffic to reserve sufficient bandwidth and control the delay variation to meet its transmission needs. In this manner, the proposed scheme can provide the necessary requirements, such as the guaranteed of the delay variation and delay bound for real-time traffic. Additionally, because the proposed scheme reserve the minimum bandwidth for the BE traffic, the BE traffic can be prevent from starvation. Furthermore, the proposed scheme can dynamically adjust transmission boundary between the real-time and the BE traffic according to the various requests of the subscribers. Finally, computer simulations have shown that the proposed scheme can have better performance than other QoS schemes in terms of throughput, jitter and delay bound.
[1] Jun Zheng, and Hussein T. Mouftah, “Optical WDM Networks:concepts and Design Priciples,” Wiley-IEEE Press, Aug. 2004.
[2] George T. Hawley, “Systems considerations for the use of xDSL technology for data access,” IEEE Communications Magazine, Vol. 35, No. 3, pp. 56-60, Mar. 1997.
[3] Vijay K. Bhagavath, “Emerging high-speed xDSL access services: architectures, issues, insights, and implications,” IEEE Communications Magazine, vol. 37, No. 11, pp.106-114, Nov. 1999.
[4] John W. Eng, and James F. Mouenauh, “IEEE Project 802.14: standards for digital convergence,” IEEE Communications Magazine, Vol. 33, No. 5, pp. 20-23, May 1995.
[5] Andrew Paff, “Hybrid fiber/coax in the public telecommunications infrastructure,” IEEE Communications Magazine, Vol. 33, No. 4, pp. 40-45, Apr. 1995.
[6] Chatschik Bisdikian, Kiyoshi Maruyama, David l. Seidman, and Dimitrios N. Serpanos, “Cable access beyond the hype: on residential broadband data services over HFC networks,” IEEE Communications Magazine, Vol. 34, No. 11, pp. 128-135, Nov. 1996.
[7] ITU-T G.983.1, “Broadband Passive Optical Networks (BPON): General characteristics,” Jun. 1999.
[8] ITU-T G.984.1, SG 15, “Gigabit-Capable Passive Optical Networks (G-PON): General Characteristics,” Mar. 2003.
[9] ITU-T G.984.2, SG 15, “Gigabit-Capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) Layer Specification,” Mar. 2003.
[10] ITU-T G.984.3, SG 15, “Gigabit-Capable Passive Optical Networks (G-PON): Transmission Convergence Layer Specification,” Jul. 2005.
[11] ITU-T G.984.4, SG 15, “Gigabit-Capable Passive Optical Networks (G-PON): ONT Management and Control Interface Specification,” Jun. 2005.
[12] IEEE 802.3ah, “Ethernet in the First Mile,” Jun. 2004.
[13] Chang-Hee Lee, Wayne V. Sorin, and Byoung Yoon Kim, “Fiber to the Home Using a PON Infrastructure,” Journal of Lightwave Technology, Vol. 24, No. 12, pp. 4568-4583, Dec. 2006.
[14] Glen Kramer, Biswanath Mukherjee, and Gerry Pesavento, “IPACT: A dynamic protocol for an Ethernet PON (EPON),” IEEE Communications Magazine, Vol. 40, No. 2, pp. 74-80, Feb. 2002.
[15] Glen Kramer, and Gerry Pesavento, “Ethernet passive optical network (EPON): building a next-generation optical access network,” IEEE Communications Magazine, Vol. 40, No. 2, pp. 66-73, Feb. 2002.
[16] Jun Zheng, and Hussein T. Mouftah, “Media access control for Ethernet passive optical networks: an overview,” IEEE Communications Magazine, Vol. 43, No. 2, pp. 145-150, Feb. 2005.
[17] Michael P. McGarry, Martin Maier, and Martin Reisslein, “Ethernet PONs: a survey of dynamic bandwidth allocation (DBA) algorithms,” IEEE Communications Magazine, Vol. 42, No. 8, pp. S8-S15, Aug. 2004.
[18] Michael P. McGarry, Martin Maier, and Martin Reisslein, “Ethernet Passive Optical Network Architectures and Dynamic Bandwidth Allocation Alogrithms,” IEEE Communications Surveys and Tutorials, Vol. 10, No. 3, pp. 46-60, 2008.
[19] Glen Kramer, and Biswanath Mukherjee, “Ethernet PON: design and analysis of an optical access network,” Photonic Network Communications, Vol. 3, No. 3, pp. 307-319, Jul. 2001.
[20] Glen Kramer, Biswanath Mukherjee, Sudhir Dixit, Yinghua Ye, and Ryan Hirth, “Supporting differentiated classes of service in Ethernet passive optical networks,” Journal of Optical Network, Vol. 1, No. 8, pp. 280–298, Sep. 2002.
[21] Chadi M. Assi, Yinghua Ye, Sudhir Dixit, and Mohamed A. Ali, “Dynamic bandwidth allocation for quality-of-service over ethernet PONs,” IEEE Journal on Selected Areas in Communications, Vol. 21, No. 9, pp. 1467-1477, Nov. 2003.
[22] Ahmad R. Dhaini, Chadi M. Assi, Abdallah Shami, and Nasir Ghani, “Adaptive Fairness through Intra-ONU Scheduling for Ethernet Passive Optical Networks,” IEEE International Conference on Communications, Vol. 6, pp. 2687–2692, Jun. 2006.
[23] V. Jacobson, K. Nichols, and K. Poduri, “An Expedited Forwarding PHB,” RFC 2598, Jun. 1999.
[24] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB Group,” RFC 2597, Jun. 1999.
[25] David D. Clark, and Wenjia Fang, “Explicit Allocation of Best Effort packet Delivery Service,” IEEE/ACM Transactions on Networking, Vol. 6, No. 4, pp. 364-373, Aug. 1998.
[26] Maode Ma, Yongqing Zhu, and Tee Hiang Cheng, “A bandwidth guaranteed polling MAC protocol for Ethernet passive optical networks,” IEEE International Conference on Computer Communications, Vol. 1, pp. 22-31, Mar. 2003.
[27] Abdallah Shami, Xiaofeng Bai, Chadi M. Assi, and Nasir Ghani, “Jitter performance in Ethernet passive opatical networks.” Journal of Lightwave Technology, Vol. 23, No. 4, pp. 1745-1756, Apr. 2005.
[28] Mirjana R. Radivojević and Petar S. Matavulj, “Implementation of Intra-ONU Scheduling for Quality of Service Support in Ethernet Passive Optical Networks,” Journal of Lightwave Technology, Vol. 27, No. 18, pp. 4055-4061, Sep. 2009.
[29] Chadi Assi, Martin Maier, and Abdallah Shami, “Toward quality of service protection in ethernet passive optical networks: Challenges and solutions,” IEEE Network, Vol. 21, No. 5, pp. 12-19, Sep. 2007.
[30] Tomaz Berisa, Alen Bazant, and Vedran Mikac, “Bandwidth and delay guaranteed polling with adaptive cycle time (BDGPACT): a scheme for providing bandwidth and delay guarantees in passive optical networks,” Journal of Optical Networking, Vol. 8, No. 4, pp. 337-345, Apr. 2009.
[31] Wang Rong Chang, and Hui Tang Lin, “Integration of differentiated services with fairness control on a WDM metro ring” Photonic Network Communications, Vol. 13, No. 2, pp. 167-181, Apr. 2007.
校內:2015-08-27公開