| 研究生: |
郭薰鎂 Kuo, Xun-Mei |
|---|---|
| 論文名稱: |
午睡對於睏倦者的睏睡減緩與認知表現恢復效果 Effects of Power Nap on Sleepiness Relief and Cognitive Performance Recovery in Sleepy People |
| 指導教授: |
梁勝富
Liang, Sheng-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 37 |
| 中文關鍵詞: | 睏倦 、強力午睡 、主觀睏睡 、認知表現恢復 |
| 外文關鍵詞: | sleepiness, power nap, subjective sleepiness, cognitive performance recovery |
| 相關次數: | 點閱:73 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
疲勞與睏倦常是導致事故的誘因,透過小睡用於睏倦緩解以及認知能力改善的研究已經被提出。具體而言,一段20分鐘以上的午睡或是至少在非快眼動期(NERM)的第二睡眠階段(N2)維持10分鐘的睡眠,就能達到立竿見影的效果。但目前文獻僅綜整了午睡對於睏睡的緩解以及附加認知功能的恢復,對於睏睡者實際睏睡情形以及大腦活動現象並未描述。本研究基於探討強力午睡對高度睏睡者的關聯性,設計了一套午睡實驗流程,並導入穿戴式裝置,目的為觀察受試者從清醒至睏倦下進入睡眠,隨後被我們依睡眠階段喚醒的過程。該實驗徵召10 位受試者進行設計的午睡流程。在受試者入睡前,會穿戴頭戴型生理紀錄儀器,紀錄前額葉腦電圖(forehead-EEG),其包含腦波(EEG)以及眼動波特徵(EOG),受試者被要求觀看行車紀錄影片,並儘量保持清醒直到入睡,藉此誘發睏睡。即時評估受試者的睡眠狀態,並在進入N2階段10分鐘後或出現慢波特徵(0.5-4 Hz,Slow Wave Sleep,SWS)後進行喚醒,以避免睡眠惰性的產生。午睡前後皆會進行主觀睏睡度評估以及認知測定,藉這整個流程來探討午睡前後受試者的睏睡度與認知表現。
午睡後,受試者的恢復緩解情形良好,睏睡度與認知行為表現與在警覺時的狀態沒有顯著差異(P>0.05);探究整個午睡進程,由EOG特徵可以發現受試者們在疲倦時的眨眼頻率比起清醒警覺時平均增加1.37±0.40倍。EEG特徵也顯示疲倦狀態下午睡會較一般情形,更快入睡(N1: 2.33±1.6 min; N2: 5.06±1.98 min),由此得知疲累的程度會影響人們的睡眠結構與腦波特徵。此外,我們的研究也發現睏睡者若單純休息一段時間(不睡覺)後,他們的主客觀表現沒有回到警覺時的水準,在高強度的認知工作下可能會帶來危險,由此得知強力午睡對於恢復的必要性。藉由這種強力午睡(進入N2後持續10分鐘),能有效緩解睏睡者想睡的狀況且對於恢復認知能力有的正向作用,可以改善他們的工作能力及精神。
Fatigue and sleepiness are often the cause of accidents, and studies have been conduct-ed on the use of naps for sleepiness relief and cognitive improvement. Specifically, a 20-min nap or at least 10 mins of sleep during the second sleep stage (N2) of the non-rapid eye movement (NERM) period can have an immediate effect. However, the current literature only summarizes the relief of sleepiness and the recovery of additional cognitive functions by nap but does not describe the actual sleepiness and brain activity of sleepy people. This study aims to explore the effects of a power nap on highly sleepy individuals. We designed an experiment using wearable devices to observe participants as they transitioned from drowsiness to sleep and were subsequently awakened at spe-cific sleep stages. Participants wear a physiological recording device to measure fore-head-EEG, including EEG and EOG. They watch a car recorder video and try to stay awake until falling asleep. The device monitors the sleep stage and provides a wake-up signal after 10 mins in N2 or during slow-wave sleep (SWS) to prevent sleep inertia. Sleepiness and cognitive performance are assessed before and after the nap.
In our study, the subject recovered well, and there was no significant difference in sleepiness and cognitive behavior performance from the state of alertness (P>0.05); throughout the nap, the EOG characteristics showed that the number of eye blinks in the sleepiness was higher than that in the alertness. The average increase was 1. 37±0.40 times; the EEG also showed that the process change was faster in sleepiness than in normal state (N1: 2.33±1.6 min; N2: 5.06±1.98 min). It is known that the degree of sleepiness affects the sleep structure and brain pattern, in the case of fast sleep and short N2 delay. In addition, our study also found that sleepy people who simply rested for a period of time (without sleeping) did not return to their subjective and objective performance levels when they were alert, which could be dangerous under high-intensity cognitive work, thus demonstrating the necessity of a power nap for re-covery. This kind of power nap (enter the N2 and continue for 10 minutes) can effec-tively relieve the sleepy people's desire to sleep and has a positive effect on the recovery of cognitive ability, which can restore their working ability and spirit.
Åkerstedt, T., & Gillberg, M. (1990). Subjective and objective sleepiness in the active individual. International journal of neuroscience, 52(1-2), 29-37.
Backhaus, J., & Junghanns, K. (2006). Daytime naps improve procedural motor memory. Sleep medicine, 7(6), 508-512.
Bari, A., Khan, R. A., & Rathore, A. W. (2016). Medical errors; causes, consequences, emotional response and resulting behavioral change. Pakistan journal of medical sciences, 32(3), 523.
Brooks, A., & Lack, L. (2006). A brief afternoon nap following nocturnal sleep restriction: which nap duration is most recuperative? Sleep, 29(6), 831-840.
Caldwell, J. A., Caldwell, J. L., Thompson, L. A., & Lieberman, H. R. (2019). Fatigue and its management in the workplace. Neuroscience & Biobehavioral Reviews, 96, 272-289.
Chen, C.-Y. (2012). Effects of Daytime Naps on Sleepiness Reduction and Performance Enhancement National Cheng Kung University].
Chen, T.-Y. (2017). Analysis of EEG and EOG Changes from Alertness to Sleepiness
Cluydts, R., De Valck, E., Verstraeten, E., & Theys, P. (2002). Daytime sleepiness and its evaluation. Sleep medicine reviews, 6(2), 83-96.
Ficca, G., Axelsson, J., Mollicone, D. J., Muto, V., & Vitiello, M. V. (2010). Naps, cognition and performance. Sleep medicine reviews, 14(4), 249-258.
Ganesan, S., Magee, M., Stone, J. E., Mulhall, M. D., Collins, A., Howard, M. E., Lockley, S. W., Rajaratnam, S. M., & Sletten, T. L. (2019). The impact of shift work on sleep, alertness and performance in healthcare workers. Scientific reports, 9(1), 4635.
Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. circulation, 101(23), e215-e220.
Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., & Dement, W. C. (1973). Quantification of sleepiness: a new approach. Psychophysiology, 10(4), 431-436.
Jagannath, M., & Balasubramanian, V. (2014). Assessment of early onset of driver fatigue using multimodal fatigue measures in a static simulator. Applied ergonomics, 45(4), 1140-1147.
Lastella, M., Halson, S. L., Vitale, J. A., Memon, A. R., & Vincent, G. E. (2021). To nap or not to nap? A systematic review evaluating napping behavior in athletes and the impact on various measures of athletic performance. Nature and science of sleep, 841-862.
Liang, S.-F., Kuo, C.-E., Hu, Y.-H., & Cheng, Y.-S. (2012). A rule-based automatic sleep staging method. Journal of neuroscience methods, 205(1), 169-176.
Liang, S.-F., Shih, Y.-H., Hu, Y.-H., & Kuo, C.-E. (2020). A method for napping time recommendation using electrical brain activity. IEEE Transactions on Cognitive and Developmental Systems, 12(3), 645-657.
Lin, C.-T., Wu, R.-C., Liang, S.-F., Chao, W.-H., Chen, Y.-J., & Jung, T.-P. (2005). EEG-based drowsiness estimation for safety driving using independent component analysis. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(12), 2726-2738.
Parikh, P., & Micheli-Tzanakou, E. (2004). Detecting drowsiness while driving using wavelet transform. IEEE 30th Annual Northeast Bioengineering Conference, 2004. Proceedings of the,
Poussel, M., Laroppe, J., Hurdiel, R., Girard, J., Poletti, L., Thil, C., Didelot, A., & Chenuel, B. (2015). Sleep management strategy and performance in an extreme mountain ultra-marathon. Research in Sports Medicine, 23(3), 330-336.
Purnell, M., Feyer, A. M., & Herbison, G. (2002). The impact of a nap opportunity during the night shift on the performance and alertness of 12‐h shift workers. Journal of sleep research, 11(3), 219-227.
Safety, F. f. T. (2022). Countermeasures to Reduce Drowsy Driving: Results of a Literature Review and Discussions with Experts. https://aaafoundation.org/countermeasures-to-reduce-drowsy-driving-results-of-a-literature-review-and-discussions-with-experts/
Shaw, F.-Z. (2022). Mind assess and training system. http://140.116.98.155:1337/
Tassi, P., & Muzet, A. (2000). Sleep inertia. Sleep medicine reviews, 4(4), 341-353.
Williamson, A., Lombardi, D. A., Folkard, S., Stutts, J., Courtney, T. K., & Connor, J. L. (2011). The link between fatigue and safety. Accident Analysis & Prevention, 43(2), 498-515.
Wilson, B. J., & Bracewell, T. D. (2000). Alertness monitor using neural networks for EEG analysis. Neural networks for signal processing X. Proceedings of the 2000 IEEE signal processing society workshop (Cat. No. 00TH8501)
校內:2028-08-21公開