簡易檢索 / 詳目顯示

研究生: 陳品均
Chen, Pin-Chun
論文名稱: 探討 RPA2蛋白在人類癌細胞株中的功能性角色
Functional Studies of RPA2 in Human Cancer Cell Lines
指導教授: 張敏政
Chang, Ming-Chung
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 89
中文關鍵詞: 單股DNA結合因子細胞凋亡細胞老化自發性的DNA損傷
外文關鍵詞: RPA2, cellular senescence, apoptosis
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Replication protein A (RPA)是真核細胞中單股DNA結合因子(single-strand DNA binding-factor)的一個家族,它是由RPA1、RPA2和RPA3三個次單元體組成。RPA被認為在DNA複製、修復和重組等DNA代謝機制中扮演不可缺少的角色。其中,RPA2在細胞周期及DNA損傷的時候會被磷酸化,進而促使RPA的結構改變並影響其與DNA結合的能力。此外,近年紛紛有研究指出RPA1和RPA2在大腸癌和腎臟癌中的高表現可做為一個病人存活率較低的指標。高度磷酸化的RPA2在頭頸癌細胞當中也可以做為一個細胞對於化療藥物具抗藥性的標誌。這些研究皆推論RPA2可能成為日後治療癌症的標的或指標。然而,RPA2在癌細胞當中扮演的角色是什麼目前尚未了解。在我們的研究發現,RPA2蛋白表現量在較惡性的人類肺癌、乳癌和大腸癌細胞株中都有較多的現象。因此,我們利用帶有RPA2短髮夾型 RNA (short-hairpin RNA; shRNA)的慢病毒 (Lentivirus)感染人類癌細胞株,試圖抑制細胞內其基因的表現,進而釐清RPA2在癌細胞中所扮演的角色。實驗結果顯示,在A549人類肺癌細胞株中抑制RPA2表現會促使細胞生長、增殖和形成聚落能力有降低的趨勢。我們也藉由Hoechst 33342/PI雙染偵測細胞凋亡實驗發現,抑制RPA2表現會引發細胞凋亡。特別地,抑制RPA2表現會使細胞變成肥大的型態,同時也誘發了SA-β-gal活性及肌動蛋白壓力性纖維累積等細胞老化的指標產生。然而,在分子機制上分析顯示,抑制RPA2表現誘發細胞老化的現象僅發生於表現正常p53蛋白的A549和MCF7細胞株,並非缺失p53基因的H1299細胞株。此外,我們也發現不管在A549、MCF7或H1299細胞株中抑制RPA2表現都會產生自發性的DNA損傷。綜合以上結果,我們推測在人類癌細胞中,RPA2缺失會讓細胞產生自發性DNA損傷,使細胞凋亡及細胞老化等DNA損傷的反應發生,最後導致癌細胞生長、增殖及形成聚落的能力降低。

    Replication protein A (RPA), the main eukaryotic ssDNA binding protein, is a protein of heterotrimer composed of three tightly associated subunits of RPA1, RPA2, and RPA3. RPA has been found to be an indispensable player in DNA metabolic pathways such as DNA replication, repair and recombination. In addition, RPA2 has been shown to undergo cell cycle-dependent and damage-induced phosphorylation; it may influence RPA conformation and DNA-binding characteristics. Moreover, recent studies have shown that RPA1 and RPA2 emerged as predictors of poor survival rate in patients with colon cancer or bladder cancer. Hyperphosphorylation of RPA2 is also a marker for increased cellular resistance to chemotherapy in head and neck squamous cell carcinoma. These studies suggested that RPA2 may be a therapeutic target for cancer treatment. However, the role of RPA2 in cancer cells remains unknown. Here, we found that RPA2 protein expression was upregulated in malignant human lung, breast and colon cancer cell lines. To elucidate the role of RPA2 in tumor, we infected human cancer cells with lentiviruses that produced specific short-hairpin RNA to silence their RPA2 gene expression. The result showed that RPA2 knockdown in the A549 cells reduced cell growth, cell proliferation and colony formation. We also found that RPA2 depletion induced apoptosis by Hoechst 33342/PI double stain apoptosis detection assay. Notably, RPA2 depletion markedly caused enlarged cell morphology and induced the expression of senescence markers, such as senescence-associated β-galatosidase activity and actin stress fibers accumulation. Mechanistic dissection showed that cellular senescence induced by RPA2 knockdown was associated with p53 activation in A549 and MCF7 cells(wt-p53), but not in H1299 cells(p53-null). Furthermore, we also found that RPA2 depletion caused spontaneous DNA damage in A549, MCF7 and H1299 cells. Collectively, our findings suggest that RPA2 depletion may induce spontaneous DNA damage and then cause DNA damage responses, such as apoptosis and senescence, in human cancer cell lines.

    中文摘要 I Abstract II 誌謝 III 目錄 V 圖表目錄 VIII 縮寫表 IX 第1章 緒論 1 前言 2 1-1 RPA的生理功能 2 1-2 RPA三個次單元體的簡介 3 1-3 RPA2的磷酸化 6 1-4 RPA2與癌症之關聯 8 1-5 腫瘤的生成 9 1-6 細胞老化 10 1-7 細胞凋亡 11 1-8 研究動機 13 第2章 材料與方法 14 2-1 實驗菌株與培養基配方 15 2-1-1 實驗菌株 15 2-1-2 培養基配方 15 2-2 細胞培養方法 16 2-2-1 實驗細胞株 16 2-2-2 細胞解凍 16 2-2-3 細胞繼代培養 17 2-2-4 細胞計數 17 2-2-5 細胞保存 18 2-3 質體製備 19 2-3-1 聚合酶連鎖反應 19 2-3-2 構築PCR片段於質體中 20 2-3-3 E. coli 形質轉型 21 2-3-4 小量質體製備 22 2-4 蛋白質分析 23 2-4-1 蛋白質萃取 23 2-4-2 蛋白質定量 23 2-4-3 SDS-PAGE 蛋白質電泳 24 2-4-4 西方墨點法 25 2-5 在A549人類肺癌細胞建立RPA2表現抑制的穩定細胞 27 2-5-1 RPA2 shRNA 之來源 27 2-5-2 細胞轉染 27 2-5-3 利用抗生素篩選穩定細胞株 28 2-6 RPA2表現抑制的穩定細胞株對於影響腫瘤生長能力的分析 29 2-6-1 利用Cell Counting Kit-8檢測穩定細胞株生長速率 29 2-6-2 利用BrdU Cell Proliferation Assay檢測穩定細胞株增殖能力 29 2-6-3 利用Colony Formation Assay觀察穩定細胞株形成細胞群落的能力 30 2-7 RPA2表現抑制的穩定細胞株對於影響細胞凋亡和老化的分析 31 2-7-1 利用Hochest 33342/PI雙染色法檢測細胞凋亡程度 31 2-7-2 檢測穩定細胞株內senescence-associated β-galactosidase的活性 31 2-7-3 利用Rhodamine phalloidin螢光染色觀察肌動蛋白應力性纖維的分布 32 2-8 p53 siRNA的暫時轉染 33 2-9 分析RPA2表現抑制的穩定細胞株產生的自發性DNA損傷 33 2-10 統計方法 34 第3章 實驗結果 35 3-1 在不同人類癌細胞株中RPA2的表現量與腫瘤發展有關 36 3-2 在A549人類肺癌細胞建立RPA2表現抑制的穩定細胞 36 3-3 在A549細胞株中抑制RPA2表現會降低細胞增殖及細胞生長速率 37 3-3-1 利用Cell Counting Kit-8檢測穩定細胞株生長速率 38 3-3-2 利用BrdU Cell Proliferation Assay檢測穩定細胞株增殖能力 38 3-3-3 利用Colony Formation Assay觀察穩定細胞株形成細胞群落的能力 39 3-4 在A549細胞株中抑制RPA2表現會促使細胞凋亡及細胞老化發生 39 3-4-1 利用Hochest 33342/PI雙染色法檢測細胞凋亡程度 40 3-4-2 分析穩定細胞株內抗細胞凋亡及細胞凋亡相關基因的蛋白質表現 40 3-4-3 利用相位差顯微鏡觀察穩定細胞株的細胞型態 41 3-4-4 檢測穩定細胞株內senescence-associated β-galactosidase的活性 42 3-4-5 利用Rhodamine phalloidin螢光染色觀察肌動蛋白應力性纖維的分布 42 3-4-6 分析穩定細胞株內與細胞老化相關基因的蛋白質表現 43 3-5 p53參與在抑制RPA2蛋白表現所引發的細胞老化過程 44 3-5-1 分析p53 siRNA暫時轉染對於RPA2表現抑制穩定細胞株的影響 44 3-5-2 在H1299細胞株中抑制RPA2蛋白表現對於細胞老化的影響 45 3-5-3 在MCF7細胞株中抑制RPA2蛋白表現對於細胞老化的影響 45 3-6 抑制RAP2蛋白表現促使人類癌細胞株產生自發性DNA損傷 46 第4章 實驗討論 49 4-1 RPA2在癌症之中扮演之角色 50 4-2 RPA2抑制癌細胞生長的機制 51 4-3 在RPA2抑制癌細胞生長之中p53蛋白的角色 53 4-4 自發性DNA損傷的產生 54 4-5 RPA1蛋白的角色 55 參考文獻 57 實驗圖表 64 附錄 83 自述 89

    Abramova NA, Russell J, Botchan M, Li R (1997) Interaction between replication protein A and p53 is disrupted after UV damage in a DNA repair-dependent manner. Proc Natl Acad Sci U S A 94: 7186-7191.

    Anantha RW, Sokolova E, Borowiec JA (2008) RPA phosphorylation facilitates mitotic exit in response to mitotic DNA damage. Proc Natl Acad Sci U S A 105: 12903-12908.

    Aravind L, Dixit VM, Koonin EV (2001) Apoptotic molecular machinery: vastly increased complexity in vertebrates revealed by genome comparisons. Science 291: 1279-1284.

    Araya R, Hirai I, Meyerkord CL, Wang HG (2005) Loss of RPA1 induces Chk2 phosphorylation through a caffeine-sensitive pathway. FEBS Lett 579: 157-161.

    Arunkumar AI, Stauffer ME, Bochkareva E, Bochkarev A, Chazin WJ (2003) Independent and coordinated functions of replication protein A tandem high affinity single-stranded DNA binding domains. J Biol Chem 278: 41077-41082.

    Binz SK, Sheehan AM, Wold MS (2004) Replication protein A phosphorylation and the cellular response to DNA damage. DNA Repair (Amst) 3: 1015-1024.

    Binz SK, Wold MS (2008) Regulatory functions of the N-terminal domain of the 70-kDa subunit of replication protein A (RPA). J Biol Chem 283: 21559-21570.

    Blackwell LJ, Borowiec JA, Mastrangelo IA (1996) Single-stranded-DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol Cell Biol 16: 4798-4807.

    Block WD, Yu Y, Lees-Miller SP (2004) Phosphatidyl inositol 3-kinase-like serine/threonine protein kinases (PIKKs) are required for DNA damage-induced phosphorylation of the 32 kDa subunit of replication protein A at threonine 21. Nucleic Acids Res 32: 997-1005.

    Bochkarev A, Bochkareva E, Frappier L, Edwards AM (1999) The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J 18: 4498-4504.

    Bochkareva E, Frappier L, Edwards AM, Bochkarev A (1998) The RPA32 subunit of human replication protein A contains a single-stranded DNA-binding domain. J Biol Chem 273: 3932-3936.

    Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A (2002) Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J 21: 1855-1863.

    Brill SJ, Stillman B (1991) Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev 5: 1589-1600.

    Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276: 42462-42467.

    Campisi J, d'Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729-740.

    Carrel A (1912) On the Permanent Life of Tissues Outside of the Organism. J Exp Med 15: 516-528.

    Carty MP, Levine AS, Dixon K (1992) HeLa cell single-stranded DNA-binding protein increases the accuracy of DNA synthesis by DNA polymerase alpha in vitro. Mutat Res 274: 29-43.

    Carty MP, Zernik-Kobak M, McGrath S, Dixon K (1994) UV light-induced DNA synthesis arrest in HeLa cells is associated with changes in phosphorylation of human single-stranded DNA-binding protein. EMBO J 13: 2114-2123.

    Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130: 223-233.

    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O, et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92: 9363-9367.

    Din S, Brill SJ, Fairman MP, Stillman B (1990) Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev 4: 968-977.

    Dodson GE, Shi Y, Tibbetts RS (2004) DNA replication defects, spontaneous DNA damage, and ATM-dependent checkpoint activation in replication protein A-deficient cells. J Biol Chem 279: 34010-34014.

    Dutta A, Stillman B (1992) cdc2 family kinases phosphorylate a human cell DNA replication factor, RPA, and activate DNA replication. EMBO J 11: 2189-2199.

    Erdile LF, Wold MS, Kelly TJ (1990) The primary structure of the 32-kDa subunit of human replication protein A. J Biol Chem 265: 3177-3182.

    Fang F, Newport JW (1993) Distinct roles of cdk2 and cdc2 in RP-A phosphorylation during the cell cycle. J Cell Sci 106 ( Pt 3): 983-994.

    Fotedar R, Roberts JM (1992) Cell cycle regulated phosphorylation of RPA-32 occurs within the replication initiation complex. EMBO J 11: 2177-2187.

    Georgaki A, Hubscher U (1993) DNA unwinding by replication protein A is a property of the 70 kDa subunit and is facilitated by phosphorylation of the 32 kDa subunit. Nucleic Acids Res 21: 3659-3665.

    Givalos N, Gakiopoulou H, Skliri M, Bousboukea K, Konstantinidou AE, Korkolopoulou P, Lelouda M, Kouraklis G, Patsouris E, Karatzas G (2007) Replication protein A is an independent prognostic indicator with potential therapeutic implications in colon cancer. Mod Pathol 20: 159-166.

    Gomes XV, Wold MS (1995) Structural analysis of human replication protein A. Mapping functional domains of the 70-kDa subunit. J Biol Chem 270: 4534-4543.

    Haring SJ, Humphreys TD, Wold MS (2010) A naturally occurring human RPA subunit homolog does not support DNA replication or cell-cycle progression. Nucleic Acids Res 38: 846-858.

    Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585-621.

    He Z, Brinton BT, Greenblatt J, Hassell JA, Ingles CJ (1993) The transactivator proteins VP16 and GAL4 bind replication factor A. Cell 73: 1223-1232.

    He Z, Henricksen LA, Wold MS, Ingles CJ (1995) RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374: 566-569.

    Henricksen LA, Umbricht CB, Wold MS (1994) Recombinant replication protein A: expression, complex formation, and functional characterization. J Biol Chem 269: 11121-11132.

    Kanakis D, Levidou G, Gakiopoulou H, Eftichiadis C, Thymara I, Fragkou P, Trigka EA, Boviatsis E, Patsouris E, Korkolopoulou P (2011) Replication protein A: a reliable biologic marker of prognostic and therapeutic value in human astrocytic tumors. Hum Pathol.

    Kenny MK, Lee SH, Hurwitz J (1989) Multiple functions of human single-stranded-DNA binding protein in simian virus 40 DNA replication: single-strand stabilization and stimulation of DNA polymerases alpha and delta. Proc Natl Acad Sci U S A 86: 9757-9761.

    Kim C, Paulus BF, Wold MS (1994) Interactions of human replication protein A with oligonucleotides. Biochemistry 33: 14197-14206.

    Kwak IH, Kim HS, Choi OR, Ryu MS, Lim IK (2004) Nuclear accumulation of globular actin as a cellular senescence marker. Cancer Res 64: 572-580.

    Lee SH, Kim DK, Drissi R (1995) Human xeroderma pigmentosum group A protein interacts with human replication protein A and inhibits DNA replication. J Biol Chem 270: 21800-21805.

    Levidou G, Gakiopoulou H, Kavantzas N, Saetta AA, Karlou M, Pavlopoulos P, Thymara I, Diamantopoulou K, Patsouris E, Korkolopoulou P (2010) Prognostic significance of replication protein A (RPA) expression levels in bladder urothelial carcinoma. BJU Int.

    Li R, Botchan MR (1993) The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell 73: 1207-1221.

    Lin YL, Chen C, Keshav KF, Winchester E, Dutta A (1996) Dissection of functional domains of the human DNA replication protein complex replication protein A. J Biol Chem 271: 17190-17198.

    Liu VF, Weaver DT (1993) The ionizing radiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cells. Mol Cell Biol 13: 7222-7231.

    Loeb LA (1998) Cancer cells exhibit a mutator phenotype. Adv Cancer Res 72: 25-56.

    Manthey KC, Glanzer JG, Dimitrova DD, Oakley GG (2010) Hyperphosphorylation of replication protein A in cisplatin-resistant and -sensitive head and neck squamous cell carcinoma cell lines. Head Neck 32: 636-645.

    Matsunaga T, Park CH, Bessho T, Mu D, Sancar A (1996) Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem 271: 11047-11050.

    Miller SD, Moses K, Jayaraman L, Prives C (1997) Complex formation between p53 and replication protein A inhibits the sequence-specific DNA binding of p53 and is regulated by single-stranded DNA. Mol Cell Biol 17: 2194-2201.

    Nagelhus TA, Haug T, Singh KK, Keshav KF, Skorpen F, Otterlei M, Bharati S, Lindmo T, Benichou S, Benarous R, Krokan HE (1997) A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J Biol Chem 272: 6561-6566.

    Niu H, Erdjument-Bromage H, Pan ZQ, Lee SH, Tempst P, Hurwitz J (1997) Mapping of amino acid residues in the p34 subunit of human single-stranded DNA-binding protein phosphorylated by DNA-dependent protein kinase and Cdc2 kinase in vitro. J Biol Chem 272: 12634-12641.

    Nowell PC (1986) Mechanisms of tumor progression. Cancer Res 46: 2203-2207.

    Oakley GG, Loberg LI, Yao J, Risinger MA, Yunker RL, Zernik-Kobak M, Khanna KK, Lavin MF, Carty MP, Dixon K (2001) UV-induced hyperphosphorylation of replication protein a depends on DNA replication and expression of ATM protein. Mol Biol Cell 12: 1199-1213.

    Oakley GG, Patrick SM, Yao J, Carty MP, Turchi JJ, Dixon K (2003) RPA phosphorylation in mitosis alters DNA binding and protein-protein interactions. Biochemistry 42: 3255-3264.

    Olson E, Nievera CJ, Klimovich V, Fanning E, Wu X (2006) RPA2 is a direct downstream target for ATR to regulate the S-phase checkpoint. J Biol Chem 281: 39517-39533.

    Park MS, Ludwig DL, Stigger E, Lee SH (1996) Physical interaction between human RAD52 and RPA is required for homologous recombination in mammalian cells. J Biol Chem 271: 18996-19000.

    Pfuetzner RA, Bochkarev A, Frappier L, Edwards AM (1997) Replication protein A. Characterization and crystallization of the DNA binding domain. J Biol Chem 272: 430-434.

    Philipova D, Mullen JR, Maniar HS, Lu J, Gu C, Brill SJ (1996) A hierarchy of SSB protomers in replication protein A. Genes Dev 10: 2222-2233.

    Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146: 905-916.

    Seo YS, Lee SH, Hurwitz J (1991) Isolation of a DNA helicase from HeLa cells requiring the multisubunit human single-stranded DNA-binding protein for activity. J Biol Chem 266: 13161-13170.

    Smith GC, Jackson SP (1999) The DNA-dependent protein kinase. Genes Dev 13: 916-934.

    Sulston JE (1976) Post-embryonic development in the ventral cord of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 275: 287-297.

    Tomkiel JE, Alansari H, Tang N, Virgin JB, Yang X, VandeVord P, Karvonen RL, Granda JL, Kraut MJ, Ensley JF, Fernandez-Madrid F (2002) Autoimmunity to the M(r) 32,000 subunit of replication protein A in breast cancer. Clin Cancer Res 8: 752-758.

    Umbricht CB, Erdile LF, Jabs EW, Kelly TJ (1993) Cloning, overexpression, and genomic mapping of the 14-kDa subunit of human replication protein A. J Biol Chem 268: 6131-6138.

    Vassin VM, Wold MS, Borowiec JA (2004) Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol 24: 1930-1943.

    Virshup DM, Kelly TJ (1989) Purification of replication protein C, a cellular protein involved in the initial stages of simian virus 40 DNA replication in vitro. Proc Natl Acad Sci U S A 86: 3584-3588.

    Wobbe CR, Weissbach L, Borowiec JA, Dean FB, Murakami Y, Bullock P, Hurwitz J (1987) Replication of simian virus 40 origin-containing DNA in vitro with purified proteins. Proc Natl Acad Sci U S A 84: 1834-1838.

    Zernik-Kobak M, Vasunia K, Connelly M, Anderson CW, Dixon K (1997) Sites of UV-induced phosphorylation of the p34 subunit of replication protein A from HeLa cells. J Biol Chem 272: 23896-23904.

    無法下載圖示 校內:2016-07-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE