| 研究生: |
王欽左 Wang, Chin-Tzuo |
|---|---|
| 論文名稱: |
剛體姿態動力中動量輪趨使之類陀螺效應現象及應用研究 Phenomenon and Application Studies of Wheel-Activated Gyroscopic-Like Effect in Rigid Body Attitude Dynamics |
| 指導教授: |
林穎裕
Lin, Yiing-Yuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 兩部份方法 、停止翻滾 、水平螺旋狀態 、類陀螺運動 、Lyapunov 穩定度分析 、回授線性化方法 |
| 外文關鍵詞: | two-part method, detumbling, flat-spin recovery, gyroscopic-like motion, Lyapunov stability analysis, feedback linearization |
| 相關次數: | 點閱:71 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於剛體衛星停止翻滾及水平螺旋狀態之回復,本研究使用搭載於衛星本體的力矩動量輪及三軸磁力致動器,提出兩部份控制方法。第一部份控制法則是藉由所承載的動量輪趨使剛體姿態動態中的類陀螺運動,動量輪旋轉軸裝於平行衛星之主軸方向,此控制方法可藉由操作動量輪,將翻滾或水平螺旋狀態的衛星之主軸方向,校準於系統角動量方向。在校準工作完成後,第二部份控制法則藉由選取角動量轉移參數()將衛星本體之角動量,轉移至動量輪內,或慢慢地卸除大部份角動量於太空中。兩部份控制法則皆根據Lyapunov 穩定度分析,與回授線性化方法推導而成。從停止翻滾及水平螺旋回復模擬結果中,發現在選定參數之兩部份控制法則較其他方法,可花較少時間及能量達到較高的準確度。此外,在模擬中發現,儘管動量輪力矩及磁力偶矩有輸出上限,仍可驗證兩部份控制法則之穩定度。
This research presents an efficient two-part method for detumbling and flat-spin recovery of a rigid spacecraft using an onboard torque wheel and a set of three-axis magnetic torquer. Part-1 control of the proposed method activates the gyroscopic-like motion embedded in the attitude dynamics of a rigid-body by an onboard wheel. The control manipulates the wheel, whose spin axis is parallel to a designated principal axis of the spacecraft to align the principal axis from a tumbling or a flat-spin situation to its total angular momentum vector,HT. Following the alignment, Part-2 control can either quickly stop the spacecraft's rotation by transferring its angular momentum to the wheel or slowly offload most of the momentum into space by setting the momentum-transfer coefficient,η. Control laws for both parts are derived from the Lyapunov stability analysis and the method of feedback linearization. Simulation results from the included detumbling and flat-spin recovery cases indicate that the two-part method with a chosen η effectively takes much less time and energy with better accuracy than using the other methods. In addition, the stability of the two-part method is further substantiated by the hard constraints on the wheel torque and the dipole moment in the simulations.
1.Wertz, J.R., “Spacecraft Attitude Determination and Control”, first ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 1978.
2.Kaplan M.H. edited, “Modern Spacecraft Dynamics and Control”, John Wiley & Sons, Inc, 1976, Chap 4.
3.Griffin, M.D. and French, J.R., “Space Vehicle Design”, second ed., AIAA Education Series, American Institute of Aeronautics and Astronautics, Inc., Reston, Virginia, 2004.
4.“Japan to launch multi-satellite mission”, http://usatoday30.usatoday.com/tech/science/space/2009-01-12-japan-satellite_N.htm, USATODAY, Posted 1/12/2009 9:02 AM, 15 May 2012.
5.Vega qualification flight VV01 press kit, http://www.spaceflight101.com/vega-vv01.html
6.Pocha, J.J., “An Introduction to Mission Design for Geostationary Satellites”, D. Reidel Publishing Company, Dordrecht, Holland, 1987.
7.Zahran M., Okasha M. and Galina A. Ivanova, “Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes”, Journal of Power Electronics, Vol. 6 No.11, p.p.18-28, 2006.
8.Taurus Launch System User's Guide, Release 4.0, Orbital Science Corporation, March 2006.
9.Secondary Payload Users Guide, Spaceflight, Inc., SF-2100-PUG-00001, Rev B March 2012.
10. Stickler A.C., Alfriend K.T., “Elementary Magnetic Attitude Control System”, Journal of Spacecraft and Rockets, Vol. 13, No. 5, p.p. 282-287, 1976.
11.Jan Y.W., Tsai J.R., “Active Control for initial Attitude Acquisition Using Magnetic Torquers”, Acta Astronautica, Vol.57, No.9, p.p. 754-759, 2005.
12.Shou H.N., Sheu J.S., Wang J.H., “Micro-Satellite Detumbling Mode Attitude Determination and Control: UKF Approach”, 2010 8th IEEE International Conference on Control and Automation, Xiamen, China, 2010.
13.Aghili, F., "Time-Optimal Detumbling Control of Spacecraft", Journal of Guidance, Control, and Dynamics, Vol.32, No. 5, Sept.-Oct. 2009, pp.1671-1675.
14.Avanzini, G., and Giulietti, F., "Magnetic Detumbling of a Rigid Spacecraft", Journal of Guidance, Control and Dynamics, Vol. 35, No.4, 2012, pp.1326-1334.
15.Ninomiya K., Hasimoto T., Kii T., Muranaka N., Uo M., Maeda K. and Saitoh T., “In-Orbit Performance of ASCA Satellite Attitude Control System”, Advances in the Astronautical Sciences, Vol. 86, p.p. 555-574, 1994.
16.Chen W., Jing W., “Robust Attitude Acquisition for Micro-Satellite”, Aircraft Engineering and Aerospace Technology, Vol.81, No.4, p.p. 299-307, 2009.
17.Chang Y.K., Lee B.H. and Kim S.J., “Momentum Wheel Start-UP Method for HAUSAT-2 Ultra-Small Satellite”, Aerospace Science and Technology, Vol.10, No.2, p.p. 168-174, 2006.
18.Steyn W.H. and Hashida Y., “An Attitude Control System for a Low-Cost Earth Observation Satellite with Orbit Maintenance Capability”, 13th AIAA/USU Conference on Small Satellites, SSC99-XI-4, 1999.
19.Winfree P.K. and Cochran J.E., J.R., “Nonlinear Attitude Motion of a Dual-Spin Spacecraft Containing Spherical Dampers”, Journal of Guidance, Control and Dynamics, Vol. 9, No.6, pp. 681-690, 1986.
20.Hall C.D. and Rand R.H., “Spinup Dynamics of Axial Dual-Spin Spacecraft”, Journal of Guidance, Control and Dynamics, Vol.17, No.1, pp.30-37, 1994.
21.Neishtadt A.I. and Pivovarov M.L., “Separatrix Crossing in the Dynamics of a Dual-Spin Satellite”, Journal of Applied Mathematics and Mechanics, Vol.64, No.5, pp. 709-714, 2000.
22.Devey, W.J., Field, C.F. and Flook, L. “An Active Nutation Control System for Spin Stabilized Satellite”, Automatica, Vol. 13, No. 2, 1977, pp.161-172.
23.Gebman. J.R., and Mingori, D., “Perturbation Solution for the Flat Spin Recovery of a Dual-Spin Spacecraft”, AIAA Journal, Vol.14, No.7, 1976, pp.859-867.
24.Junlins, J.L. and Turner, J.D., “Optimal Spacecraft Rotational Maneuver”, Elsevier Science Publishers, 1986, Chapter 4.
25.Hubert C., “Spacecraft Attitude Acquisition from an Arbitrary Spinning or Tumbling State”, Journal of Guidance, Control and Dynamics, Vol. 4, No.2, 1981, pp. 234-238.
26.Weissberg. J., and Ninomiya K.m “Improved Method for the Initial Attitude Acquisition Maneuver”, Journal of Guidance, Control and Dynamics, Vol. 10, No.3, 1986, pp. 316-319.
27.Bang H., Myung H.S. and Tahk M.J., “Nonlinear Monentum Transfer Control of Spacecraft by Feedback Linearization”, Journal of Spacecraft and Rockets, Vol. 39, No.6, p.p. 866-873, 2002.
28.Lian, B., and Bang, H., “Momentum Transfer-Based Attitude Control of Spacecraft with Backstepping”, IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 2, 2006, pp. 453-463.
29.Fowell, R. A., Milford, R. I., and Yocum, J. F., “Spacecraft Spin Stabilization Using a Transverse Wheel for Any Inertia Ratio”, Journal of Guidance, Control, and Dynamics, Vol. 22, No.6, 1999, pp. 768-775.
30.Lawrence, D. A., and Holden, T. E., “Essentially Globally Asymptotically Stable Nutation Control Using a Single Reaction Wheel”, Journal of Guidance, Control, and Dynamics, Vol.30, No. 6, 2007, pp. 1783-1793.
31. Myung, H. S., Bang, H., “Predictive Nutation and Spin Inversion Control of Spin-Stabilized Spacecraft”, Journal of Spacecraft and Rockets, Vol. 47, No. 6, 2010, pp. 1010-1022.
32.Slotine J.J.E., Li W., “Applied Nonlinear Control”, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1991.
33.Sidi, M. J., Spacecraft Dynamics and Control, Vol. 7, Cambridge Aerospace Series, Cam-bridge Univ. Press, New York, 1997.