| 研究生: |
楊政翰 Yang, Jheng-Han |
|---|---|
| 論文名稱: |
以方向性凝固製備AgPb18SbTe20合金之熱電性質研究 Study on Thermoelectric Properties of AgPb18SbTe20 Alloy Fabricated by Using Directional Solidification Method |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 方向性凝固 、熱電特性 、AgPb18SbTe20合金 |
| 外文關鍵詞: | Directional solidification, thermoelectric properties, AgPb18SbTe20 alloy |
| 相關次數: | 點閱:112 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
PbTe合金為典型的中溫型熱電材料,適用於一般工業廢熱回收,操作溫度範圍約為500~800K,一般而言提高熱電優值主要有兩個方向:(1)藉由增加材料載子濃度而提升熱電功率因子(power factor),(2)藉由增加材料內部聲子(phonon)散射來降低其熱傳導係數,且不會降低太多導電率。國際間採用加入不同添加物或不同融煉熱壓的製程來提升熱電優值,但遇到再現性不佳的瓶頸。
而本實驗利用方向性凝固方法製備AgPb18SbTe20熱電材料,藉由給予一溫度梯度,來控制其合金凝固時材料的組成與析出等現象,且配合微觀結構與成份分析進而對材料熱電特性來做探討。一開始利用四種元素粉末 (Ag, Pb, Te, Sb) 在真空下進行熔煉,並且以Ag熔點溫度960℃為界來討論熔煉溫度970℃與920℃的差異,然後搭配不同載台下降速率做為對照,最後與先熔煉得到Pb18Te20合金再添加Ag、Sb元素粉末進行熔煉的鑄件來進行比較分析。
Lead telluride (PbTe) is one of the typical materials used in the construction of thermoelectric generators working in the intermediate temperature range (500-800K). In this temperature scope, the materials are applied to recycling exhausted heat in industry. In the literature, many efforts are made to increase figure of merit (ZT) including increasing carrier concentration to enhance thermoelectric power factor and using scattering effect of phonon to decrease thermal conductivity. With these efforts, many studies discuss adding different element as dapant to control the electrical conductivity or applying different melting methods and hot pressing processes to enhance figure of merit. However, the poor reproducibility bottlenecks are encountered in these researches.
In this study, the thermoelectric material AgPb18SbTe20 is made by using a directional solidification method. With the scheme, to control the solidified composition, precipitate structure and so on by employing a temperature gradient is the key point to investigate the thermoelectric properties of the manufactured materials with the different resulting microstructures. In beginning of the study, elemental powders (Ag, Pb, Te, Sb) are weighted, melted and then solidified in a sealed quartz tube under the vacuum condition. Different melting temperatures 920 and 970 degree Celsius with different descending platform rates are utilized in this research. Besides, the powders of the pre-made Pb18Te20 alloy mixed with the ones of Ag and Sb are also used to manufacture the thermoelectric materials. Finally, the thermoelectric properties of the materials made in the different ways are compared and analyzed.
[1] 林曉洪,王秀華,“再生能源的明日之星—生質能”,臺灣林業期
Vol. 31,No. 3,2005。
[2] Terry M. Tritt, and M. A. Subramanian, “Thermoelectric Materials,
Phenomena, And Applications: A Bird’s Eye View.” MRS Bulletin, Vol.
31, pp. 188-198, 2006.
[3] Terry M. Tritt, and M. A. Subramanian, “Harvesting Energy Through
Thermoelectric: Power Generation and Cooling,” MRS Bulletin, Vol. 31,
No. 3, 2006.
[4] Brian Sales, “ Progress in New Thermoelectric Materials,” Fall 2004 MRS
Meeting, Boston MA Symposium S 4.5. U.S.A.
[5] Peschany carier, 109383 Moscow, Russia, “SCTBNORD” Joint Stock
Company p.3, 1999
[6] T. J. Seebeck, “Magnetic Polarization Of Metals And Minerals,”
Abhandlungen der Deutschen Akademie der Wissenchaften zu Berlin,
Vol. 265, pp. 1822-1823, 1823.
[7] J. C. Peltier, “Nouvelles experience sur la caloricite des courans
electrique,” Ann. Chim., Vol. LV1, pp. 371, 1834.
[8] H. J. Goldsmid, “Electronic Refrigeration,” pp. 1-194, 1986.
[9] W. Thomson, “On a Mechanical Theory of Thermo-Electric Currents,”
Proceeding Of The Royal Society Of Edinburgh, pp. 91-98, 1851.
[10] Gerald Mahan “Thermoelectric Materials: New Approaches to an
Old Problem”, Physics Today, vol.5, issue3, March 1997, 42, 1997.
[11] Slack G.A., Rowe D. M. ed. CRC Handbook of Thermoelectrics.
Boca Raton: CRC Press, 1995, chap.34, 40.
[12] D. M. Rowe., “Thermoelectrics Handbook:Macro to Nano,” Taylor &
Francis, Boca Raton :CRC, 2006.
[13] N. Scoville, C. Bajgar, J. P. Fleurial, and J. Vandersande, “Thermal
Conductivity Reduction in SiGe Alloys by the Addition of Nanophase
Particles,” Nanostuctured Materials, Vol. 5, No. 2, pp. 207-223, 1995.
[14] Kittl, ”Introduction to solid state physics 8/e”, John Wiley &Sons,Inc.
[15] R. W. Keyes, “High-Temperature Thermal Conductivity Of Insulating
Crystals: Relationship to the Melting Point” Phys.Rev. , vol.115,
issue3, 564-567, 1959
[16] Joseph R. Sootsman, ”New And Old Concepts In Thermoelectric
Materials”, Angew. Chem. Int. Ed. 48, 8616-8639, 2009
[17] M. M. Ibrahim, N. Afify, M. M. Hafiz, M. A. Mahmoud,
“Thermoelectric Power Of Bulk Specimens Of The System Bi1 − xTex”
Journal of Physics and Chemistry of Solids, vol.51,
issue3,253-258,1990.
[18] Joseph P.Heremans , ”Enhancement Of Thermoelectric Efficiency In
PbTe By Distortion Of The Electronic Density Of States”, Science,
vol.321, 554, 2008
[19] L.D. CHEN, “Recent Progress Of Thermoelectric Nano-composites”
Journal of Inorganic Materials, vol.25, no.6, 2010
[20]Hicks L.D. and Dresselhaus M.S., ” Effect Of Quantum-well Structures
On The Thermoelectric Figure Of Merit”, Physical review.B, vol.47,
issue19, 12727-12731, 1993.
[21] Hicks L.D. and Dresselhaus M.S., ” Thermoelectric Figure Of Merit Of
A One-dimensional Conductor”, Physical review.B, vol.47, issue19,
16631-16634, 1993
[22] Hicks L.D., Harman T.C., Sun X, and Dresselhaus M.S., “Experimental
Study Of The Effect Of Quantum-well Structures On The Thermoelectric
Fgure Of Merit”, Physical review.B, vol.53, issue56, 10493-10496, 1996
[23] E. Koukharenko, N. frety, V. G. Shepelevich, and J. C. Tedenac, ”
Electrical Properties Of Bi2−xSbxTe3 Materials Obtained By Ultrarapid
Quenching” Journal of Alloys and Compounds, vol.327,
issue1-2, 1-4 , 2001
[24] O. B. Sokolov, S. Ya. Skipidarov, N. I. Duvankov, and G. G. Shabunina,
J. ” Chemical Reactions On The Bi2Te3–Bi2Se3 Section In The Process
Of Crystal Growth”, Journal of Crystal Growth, vol.262, issue1-4,
442-448, 2004
[25] Brebrick R.F.and Allgaier R.S. ”Composition Limits Of Stability Of
PbTe”, The Journal of Chemical Physics, vol.32,issue6,1826-1831,1960
[26] Strauss A.J.” Effect of Pb- and Te-saturation On Carrier Concentrations
In Impurity-doped PbTe.” Journal of electronic Materials,vol.2, 553-556,
1973
[27] K.F.HSU, ”cubic AgPbmSbTem+2:Bulk Thermoelectric Materials With
High Figure Of Merit“ Science, 303(5659), 818-821, 2004
[28]邬永高,” AgPbmSbTem+20類化合物的製備與熱電性能”,武漢理工大
學博士論文,2007
[29] Dniel Bilc, S.D. Mahanti, Eric Quarez et al, ”Resonant Sates In The
Electronic Structure Of High Performance Thernoelectrics
AgPbSbTe2m:The Role Of Ag-Sb Microstructures”, Physical
Review letters, vol.93, no.14, 2004
[30] S.D. Mahanti, D.Bilc, “Electronic Structure Of Defects And Defect
Clusters In Narrow Band-gap Semiconductor PbTe”, Journal of
Physical :Condensed Matter 16, S5277-S5288, 2004
[31]王衡,”Ag-Pb-Sb-Te 系化合物的製備與熱電評估”,清華大學材料科
學與工程碩士論文,2005
[32] A. Kosuga, K. Kurosaki, M. Uno, and S. Yamanaka, ” Electrical
Properties Of Ag1−xPb18SbTe20 (x = 0, 0.1, 0.3)” , Journal of Alloys and Compounds, vol.386, issue1-2, 315-318, 2005
[33] A. Kosuga, K. Kurosaki, H. Muta, and S. Yamanaka, “Thermoelectric
Properties Of N-Type Ag-Pb-Sb-Te Compounds” International
Conference on Thermoelectric, p.45, 2005
[34]A. Kosuga, M. Uno, K. Kurosaki, and S. Yamanaka, “Thermoelectric
Properties Of Ag1−xPb18SbTe20 (x = 0, 0.1, 0.3)”, Journal of Alloys and
Compounds, vol.387, isuue1-2, 52-55, 2005
[35]A. Kosuga, M. Uno, K. Kurosaki, and S. Yamanaka, “Thermoelectric
Properties Of Stoichiometric Ag1−xPb18SbTe20 (x = 0, 0.1, 0.2)” Journal of
Alloys and Compounds, vol. 391, issue1-2, 288-291, 2005
[36]M.Zhou,J.-F. Li , and Takuji Kita “Nanostructured AgPbmSbTem+2 System
Bulk Materials With Enhanced Thermoelectric Performance”, Journal of
American Chemical Society, vol.130, issue13, 4527-4532, 2008
[37] T. C. Harman, D. L. Spears, and M. J. Manfra, “High Thermoelectric
Figures Of Merit In PbTe Quantum Wells” Journal of electronic
materials, vol. 25, NO.7, 1121-12, 1996
[38]H. Beyer., J. Nurnus, H. Böttner, A. Lambrecht, T. Roch, and G. Bauer, ”
PbTe Based Super Lattice Structures With High Thermoelectric
Efficiency” applied physics letters, vol.80, issue7, 1216-1218, 2002
[39]Irie T., “Lattice Thermal Conductivity Of Disordered Alloys Of Ternary
Compound Semiconductors Cu2(Sn,Ge)(Se,S)3(Ag,Pb,Sb)Te2”, Japanese
Journal of applied physics, 5(10):854-859, 1966
[40]Irie T. , ”The Thermoelectric Properties Of AgSbTe2-AgBiTe2,
AgSbTe2-PbTe and –SnTe Systems ” Japanese Journal of applied
physics, 2(2):72-82, 1963
[41] 島田賢次, “熱電特性評価装置「ZEM-3」の最新技術” , Ulvac Technical Journal, No. 65, 2006.
[42] 林志中,”真空熔煉法之製程時間對AgPbmSbTem+2熱電材料特性
之影響”,國立中興大學材料工程學研究所碩士論文,2006
[43] 余志明,“純金屬的結晶過程與鑄定結晶” 材料科學與工程基礎,
中南大學。
[44] 邱安宇等,“添加Ag、Sb對PbTe化合物組織與結構的影響”,中
國有色金屬學報,VOL.16,NO.10,2006。
[45] I.Kh.Avetisov et al, ”Growth Of Nonstoichiometric PbTe Crystals By
The Vertical Bridgman Method Using The Axial-vibration Control
Technique ”, Crystallography Reports, Vol.50, pp S124-S129, 2005
[46]Gelbstein Y, Dashevsky Z, Dariel M. “High Performance N-type
PbTe-base Materials For Thermoelectric Applications.” Physical B, Vol.
363, 196-205, 2005