簡易檢索 / 詳目顯示

研究生: 蘇靖淵
Su, Ching-Yuan
論文名稱: 光泵浦效應對銫原子階梯式電磁誘發透明的影響
Optical Pumping Effects on Electromagnetically Induced Transparency in a Three-level Cascade-type System of Cesium Atom
指導教授: 蔡錦俊
Tsai, Chin-Chun
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 銫原子電磁誘發透明
外文關鍵詞: Cesium, electromagnetically induced transparency
相關次數: 點閱:110下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文鎖定探測光在銫原子D2 line的超精細結構,並掃描耦合光到8s的超精細結構,觀測銫原子階梯式電磁誘發透明現象。
    實驗訊號要考慮速度群、綴飾態、多重中間態等因素的影響,我們考慮這些因素,並進行理論模擬,在訊號的相對位置上,我們以綴飾態模型去分析,並得到相當不錯的擬合結果,在訊號的強度上我們加入雙光子躍遷機率與光泵浦效應進行模擬,但無法擬合得很好,最後我們發現當基態一樣時,即使探測光鎖定在不同能階亦可以用一組參數去擬合訊號強度。
    接著我們觀測探測光強度對電磁誘發透明的影響,我們也做加入光泵浦效應與否之模擬的比較,當探測光強度增加時,對比模擬的訊號圖,我們可以發現其對訊號的影響並不是線性的,探測光強度增加時,增強吸收訊號亦會越來越強。並且我們利用較強的探測光,成功觀測綴飾態的存在,但在實驗的訊號位置上與理論模擬則有些許差距。

    This thesis analyzed the line intensities of the electromagnetically induced transparency in a three-level cascade-type system of cesium. The probe beam lock on different Cs D2 line hyperfine transitions and the coupling laser scanned over the 8s states to record the EIT spectra.

    Due to the effects of the atoms with different velocity, the dressed states, multi-level intermediate states, wavelength miss matching, have to take into account for construction the simulation. The position of the EIT signals could fit well with the dressed state theory. But the amplitudes of the EIT signals cannot be well fitted, even we took the two photon transition probability and the optical pumping effect into account. Finally, we found that if the ground state was the same, we could use a set of parameters to fit the amplitudes even the probe beam locked in different transitions.

    The signal of electromagnetically induced transparency affected by the power of probe beam was observed. The simulation with optical pumping effect is considered. Comparing the simulation results, we found that the effect on the signal was not linear as the power of probe beam increasing so does the enhanced absorption increasing too. And the dressed states can be observed with high power probe beam. However, the position of the experimental signals was a little different from the theory simulations.

    摘要 I Extended Abstract II 致謝 VI 目錄 VII 表目錄 IX 圖目錄 X 第一章 緒論 1 1.1 研究目的 1 1.2 電磁誘發透明簡介 1 1.3 銫原子簡介 2 第二章 基本理論 4 2.1 密度矩陣 4 2.2 光與原子交互作用 6 2.2.1 二能階系統 6 2.2.2 三能階系統與電磁誘發透明 12 2.2.3 電磁誘發透明與都卜勒效應 15 2.2.4 綴飾態 18 2.3 光泵浦效應(Optical Pumping) 25 第三章 實驗儀器及架設 30 3.1 實驗架設與步驟 30 3.2 實驗儀器 32 3.2.1 探測雷射 32 3.2.2 耦合雷射 32 3.2.3 光電倍增管(PMT) 33 3.3 雷射穩頻 35 3.4 雷射掃頻與資料擷取 40 第四章 實驗結果與分析 41 4.1 光譜頻率軸尺度校正 41 4.2 電磁誘發透明訊號模擬分析 43 4.2.1 訊號相對位置 43 4.2.2 模擬 47 4.3 探測光強度對電磁誘發透明的影響 59 4.4 利用電磁誘發透明觀察綴飾態 64 第五章 結論 71 參考文獻 72 附錄A 75 附錄B 81 附錄C 84

    [1] K. J. Boller, A. İmamoğlu, and S. E. Harris, Observation of electromagnetically induced transparency, Phys. Rev. Lett. 66, 2593 (1911).
    [2] J. Mompart and R. Corbalán, Lasing without inversion, J. Opt. B: Quantum Semiclass. Opt. 2, R7 (2000).
    [3] S. E. Harris and L. V. Hau, Nonlinear Optics at Low Light Levels, Phys. Rev. Lett. 82, 4611 (1999).
    [4]M. Albert, A. Dantan and M. Drewsen, Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals, Nature Photonics 5, 633–636 (2011).
    [5] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, Storage of Light in Atomic Vapor, Phys. Rev. Lett. 86, 783 (2001)
    [6] D. A. Steck, Cesium D Line Data Version 2.1.4, http://steck.us/alkalidata/ .
    [7] R. Loudon, The Quantum Theory of Light, Oxford, 2000.
    [8] C. Cohen-Tannoudji , J. Dupont-Roc and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, Wiley-VCH, 2004.
    [9] M. Krainska-Miszczak, Alignment and orientation by optical pumping with pi polarised light, J. Phys. B: At. Mol. Phys. 12, 555 (1979).
    [10] W. Franzen and A. G. Emslie, Atomic Orientation by Optical Pumping, Phys. Rev. 108, 1453 (1957).
    [11]C. J. Foot, Atomic Physics, Oxford, 2004.
    [12] W. Demtröder, Atoms, Molecules and Photons, Springer, 2006.
    [13] J. Gea-Banacloche, Y.Q. Li, S.Z. Jin, and M. Xiao, Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment, Phys. Rev. A 51, 576 (1995).
    [14] Z. S. He, J. H. Tsai, M. T. Lee, Y. Y. Chang, C. C. Tsai, and T. J. Whang, Determination of the Cesium 11s 2S1/2 Hyperfine Magnetic Coupling Constant Using Electromagnetically Induced Transparency, J. Phys. Soc. Jpn. 81 (2012) 124302.
    [15] Z. S. He, J. H. Tsai, Y. Y. Chang, C. C. Liao, and C. C. Tsai, Ladder-type electromagnetically induced transparency with optical pumping effect, Phys. Rev. A 87, 033402 (2013).
    [16] R. Y. Chang, W. C. Fang, Z. S. He, B. C. Ke, P. N. Chen, and C. C. Tsai, Doubly dressed states in a ladder-type system with electromagnetically induced transparency, Phys. Rev. A 76, 053420(2007).
    [17] M. Yan, E. G. Rickey, and Y. Zhu, Observation of doubly dressed states in cold atoms, Phys. Rev. A 64, 013412 (2001).
    [18] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77, 633 (2005).
    [19] P. M. Farrell and W. R. MacGillivray, On the consistency of Rabi frequency calculations, J. Phys. A: Math. Gen. 28, 209 (1995).
    [20] D. McGloin, M. H. Dunn, and D. J. Fulton, Polarization effects in electromagnetically induced transparency, Phys. Rev. A 62, 053802 (2000).
    [21] Y. Wu and X. Yang, Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis, Phys. Rev. A 71, 053806 (2005).
    [22] K. Pandey and V. Natarajan, Splitting of electromagnetically induced transparency under strong-probe conditions due to Doppler averaging, J. Phys. B: At. Mol. Opt. Phys. 41, 185504 (2008).
    [23] S. Wielandy and A. L. Gaeta, Investigation of electromagnetically induced transparency in the strong probe regime, Phys. Rev. A 58, 2500 (1998).
    [24]何宗勳, 銫原子中階梯式電磁誘發透明的躍遷特性 (成功大學博士論文, 2013).
    [25]陳維甫, 利用電磁誘發透明測量銫原子雷德堡態的精確頻率 (成功大學碩士論文, 2013).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE