| 研究生: |
莊子儀 Chuang, Tzu-Yi |
|---|---|
| 論文名稱: |
以快速沉積結晶法開發鈣鈦礦太陽能電池 Development of perovskite solar cell by fast deposition-crystallization |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、一步沉積 、快速沉積結晶法 、低溫二氧化鈦 |
| 外文關鍵詞: | Perovskite Solar Cells, one step deposition, Fast Deposition-Crystallization, Low-temperature TiO2 |
| 相關次數: | 點閱:93 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是針對反置型鈣鈦礦太陽能電池中的鈣鈦礦吸收層,利用快速沉積結晶法製備平整鈣鈦礦薄膜,利用此方法不僅可大幅降低實驗的製程時間,也可獲得平整且覆蓋率百分之百的鈣鈦礦薄膜,來提升對光捕捉的能力,再利用本實驗室所合成之低溫二氧化鈦致密層,保護鈣鈦礦吸收層,避免孔洞造成銀電極與鈣鈦礦吸收層之碘離子產生反應而形成碘化銀,造成效率以及壽命穩定性都不佳,而低溫二氧化鈦致密層增加鈣鈦礦電池的壽命以及穩定性還有再現性,進而提升短路電流密度(Jsc)和填充因子(FF),使整體的光電轉換效率(PCE)提升。本論文採用DCB為快速沉積結晶法之非溶劑的溶液,經過快速沉積結晶法後獲得一完整鈣鈦礦薄膜且效果比文獻中大多使用的甲苯效果還要好。而建立了實驗室完整鈣鈦礦太陽能電池基礎參數,從最初短路電流密度5.53mA/cm2提升到9.44mA/cm2和填充因子從0.42提升到0.556,光電轉換效率從1.4%提升到4.6%,而之後再電子傳輸層上旋塗低溫二氧化鈦致密層,使鈣鈦礦薄膜被保護,壽命以及穩定性以及效率都大幅提升,而短路電流密度9.44mA/cm2提升到11.6mA/cm2和填充因子從0.556提升到0.573,光電轉換效率從4.6%提升到5.52%,且經過測試旋塗二氧化鈦後的電池其壽命跟穩定性都大幅提升。
The purpose of this study is to focus on the absorption layer of perovskite solar cell, using the method of fast deposition-crystallization to make a flat perovskite film. We can use this method not only reduce the experiment time but also obtain the flat and hundred percent converge perovskite film to enhance the ability to capture light. We can protect the perovskite absorption layer by using the low-temperature TiO2 compact layer which we synthesis by our lab. The low-temperature TiO2 compact layer can avoid the holes to make iodide which in the perovskite absorption layer to react with silver and become AgI. The AgI can cause efficiency, life and stability are poor. The low-temperature TiO2 compact layer can promote the life, stability and reproducibility of perovskite solar cells. And then enhance the short-circuit current density (Jsc) and fill factor (FF), so that the overall photoelectric conversion efficiency (PCE) is increased. The method of FDC is using DCB to be a non-solvent solution. We obtain a complete perovskite film by FDC and the final result is better than toluene that mostly used in the literature. We make a basic parameters of perovskite solar cell in our lab and the short-circuit current density enhances from 5.53mA/cm2 up to 9.44mA/cm2, the fill factor enhances from 0.42 up to 0.556, the value of photoelectric conversion efficiency rises from 1.4% to 4.6%.And then we spin-coated low-temperature TiO2 compact layer on the electron transport layer to make the perovskite film be protected. Life ,stability and efficiency is significantly improved ,and the short-circuit current density enhances from 9.44mA/cm2 up to 11.6mA/cm2, the fill factor enhances from 0.556 up to 0.573, the value of photoelectric conversion efficiency rises from 4.6% to 5.52%.We find that the life and stability of solar cells is increased after we spin-coated TiO2 layer.
[1] Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, "Organometallic Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," Journal of American Chemical Society, vol. 131, pp. 6050-6051, April 2009.
[2] Jeong-Hyeok Im, Chang-Ryul Lee, Jin-Wook Lee, Sang-Won Park and Nam-Gyu Park, "6.5% efficient perovskite quantum- dot-sensitized solar cell," Nanoscale, vol. 3, pp. 4088-4093, August 2011
[3] Hui-Seon Kim, Chang-Ryul Lee, Jeong-Hyeok Im, Ki-Beom Lee, Thomas Moehl, Arianna Marchioro, Soo-Jin Moon, Robin Humphry-Baker, Jun-Ho Yum, Jacques E. Moser, Michael Gra¨tzel, Nam-Gyu Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Macroscopic Solar Cell with Efficiency Exceeding 9%," Scientific Reports, vol.2, pp. 1-7, August 2012.
[4] Michael M. Lee, Joël Teuscher, Tsutomu Miyasaka, Takurou N. Murakami, Henry J. Snaith, "Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometallic Halide Perovskites,“ Science, vol. 338, PP. 643-646, November 2012.
[5] Julian Burschka, Norman Pellet, Soo-Jin Moon, Robin Humphry-Baker, Peng Gao1, Mohammad K. Nazeeruddin, Michael Gra¨tze, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, pp. 316-319, July 2013.
[6] Ming Zhen Liu, Michael B. Johnston & Henry J. Snaith, “Efficient planar Heterojunction perovskite solar cells by vapor deposition," Nature, vol. 501, pp. 395-398, September 2013.
[7] Dianyi Liu and Timothy L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing technique," Nature, vol. 8, pp. 133-137, February 2014.
[8] Huanping Zhou, Qi Chen, Gang Li, Song Luo, Tze-bing Song, Hsin-Sheng Duan, Ziruo Hong, Jingbi You, Yongsheng Liu, Yang Yang, “Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, pp. 0-545, August 2014.
[9] FrontMaterials Co. Ltd. www.frontmaterials.com
[10] Jangwon Seo, Sangman Park, Young Chan Kim, Nam Joong Jeon, Jun Hong Noh, Sung Cheol Yoon and Sang Il Seok, "Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells,“ Energy & Environmental Science, vol. 7, pp. 2642-2646, June 2014..
[11] Bert Conings , Linny Baeten , Christopher De Dobbelaere , Jan D’Haen , Jean Manca , and Hans-Gerd Boyen, "Perovskite-Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach," Advanced Materials, vol. 26, pp. 2041-2046, 2014.
[12] Nam Joong Jeon1, Jun Hong Noh1, Young Chan Kim1,Woon Seok Yang, Seungchan Ryuand Sang Il Seok, "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells," Nature, vol. 13, pp. 897-902, September 2014.
[13] Qi Chen, Huanping Zhou, Ziruo Hong, Song Luo, Hsin-Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li, and Yang Yang, "Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, "Journal of American Chemical Society, vol. 136, pp. 622-625, December 2013.
[14] Dianyi Liu and Timothy L. Kelly, "Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques," Nature, vol. 8, pp. 133-137, February 2014.
[15] Jeong-Hyeok Im, In-Hyuk Jang1, Norman Pellet, Michael Grätzel and Nam-Gyu Park1, "Growth of CH3NH3PbI3 cuboids with controlled size or high-efficiency perovskite solar cells," Nature, vol. 9, pp. 927-932, August 2014.
[16] Zhengguo Xiao, Cheng Bi, Yuchuan Shao, Qingfeng Dong, Qi Wang, Yongbo Yuan, Chenggong Wang, Yongli Gaobc and Jinsong Huang, "Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers," Energy & Environmental Science, vol. 7, pp. 2619-2623, May 2014.
[17] A. M. Salau, "Fundamental Absorption Edge In PbI2:KI Alloys," Solar Energy Materials, vol. 2, pp. 327-332, 1980.
[18] D. B. Mitzi, M. T. Prikas, and K. Chondroudis,"Thin Film Deposition of Organic-Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique, " American Chemical Society, vol. 11, pp. 542-544, 1999.
[19] Olga Malinkiewicz1, Aswani Yella, Yong Hui Lee, Guillermo Mı´nguez Espallargas, Michael Graetzel, Mohammad K. Nazeeruddin and Henk J. Bolink, "Perovskite solar cells employing organic charge-transport layers," Nature, vol. 8, pp. 128-132, December 2013.
[20] Cristina Rold´an-Carmona, Olga Malinkiewicz, Alejandra Soriano, Guillermo M´ınguez Espallargas, Ana Garcia, Patrick Reinecke, Thomas Kroyer, M. Ibrahim Dar, Mohammad Khaja Nazeeruddine and Henk J. Bolink, "Flexible high efficiency perovskite solar cells," Energy & Environmental Science, vol. 7, pp. 994-997, December 2014.
[21] Qi Chen, Huanping Zhou, Ziruo Hong, Song Luo, Hsin-Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li, and Yang Yang,"Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process," Journal of American Chemical Society, vol. 136, pp. 622-625, December 2013.
[22] Samuel D. Stranks, Pabitra K. Nayak, Wei Zhang, Thomas Stergiopoulos, and Henry J. Snaith, "Formation of Thin Films of Organic–Inorganic Perovskites for High-Efficiency Solar Cells," Angewandte Minireviews, vol. 54, pp. 3240-3248, 2015.
[23] Manda Xiao, Fuzhi Huang, Wenchao Huang, Yasmina Dkhissi, Ye Zhu, Joanne Etheridge, Angus Gray-Weale, Udo Bach, Yi-Bing Cheng, and Leone Spiccia, "A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells," AngewandteZuschriften, vol. 126, pp. 10056-10061, 2014.
[24] Sanghyun Paek, Nara Cho, Hyeju Choi, Hanbin Jeong, Jin Sung Lim, Jun-Yeon Hwang, Jae Kwan Lee, and Jaejung Ko, "Improved External Quantum Efficiency from Solution-Processed (CH3NH3)PbI3 Perovskite / PC71BM Planar Heterojunction for High Efficiency Hybrid Solar Cells," American Chemical Society, vol. 118, pp. 25899-25905, October 2014.
[25] Huanping Zhou, Qi Chen, Gang Li, Song Luo, Tze-bing Song,Hsin-Sheng Duan, Ziruo Hong, Jingbi You, Yongsheng Liu, Yang Yang, “Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, pp. 542, 2014.
[26] Shuping Pang, Hao Hu, Jiliang Zhang, Siliu Lv, Yaming Yu, Feng Wei, Tianshi Qin , Hongxia Xu,Zhihong Liu, and Guanglei Cui , “An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells, ” Chemistry of Materials, vol. 26, pp. 1485-1491, 2014.
[27] Peng Qin, Sanghyun Paek, M. Ibrahim Dar, Norman Pellet, Jaejung Ko , Michael Grätzel, and Mohammad Khaja Nazeeruddin , “Perovskite Solar Cells with 12.8% Efficiency by Using Conjugated Quinolizino Acridine Based Hole Transporting Material, ” Journal of American Chemical Society, vol. 136, pp. 8516-8519, 2014
[28] Samuel D. Stranks, Giles E. Eperon, Giulia Grancini, Christopher Menelaou, Marcelo J. P. Alcocer, Tomas Leijtens, Laura M. Herz, Annamaria Petrozza, Henry J. Snaith, ” Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science, vol. 342, pp. 341-344, 2013
[29] Henry J. Snaith, Antonio Abate, James M. Ball, Giles E. Eperon, Tomas Leijtens, Nakita K. Noel, Samuel D. Stranks, Jacob Tse-Wei Wang, Konrad Wojciechowski, and Wei Zhang, “Anomalous Hysteresis in Perovskite Solar Cells,” Journal of American Chemical Society, vol.5, pp. 1511-1515, 2014
[30] V. M. Burlakov, G. E. Eperon, H. J. Snaith, S. J. Chapman1 and A. Goriely, “Controlling coverage of solution cast materials with unfavourable surface interactions,” Applied Physics Letters, vol. 104, pp.091602, 2014
[31] James M. Ball, Michael M. Lee, Andrew Hey and Henry J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy & Environmental Science, vol. 6, pp. 1739-1743, 2013
[32] Julian Burschka, Norman Pellet, Soo-Jin Moon, Robin Humphry-Baker, Peng Gao, Mohammad K. Nazeeruddin, MichaelbGrätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, pp. 316-319, 2013
[33] Giles E. Eperon, Victor M. Burlakov, Pablo Docampo, Alain Goriely and Henry J. Snaith, “Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells” Advanced Functional Materials, vol.24, pp. 151-157, 2014
[34] Kangning Liang, David B. Mitzi, and Michael T. Prikas, “Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique,” Chemistry of Materials, vol. 10, pp. 403-411, 1998
[35] Pablo Docampo, Fabian C. Hanusch, Samuel D. Stranks, Markus Döblinger, Johann M. Feckl, Martin Ehrensperger, Norma K. Minar, Michael B. Johnston, Henry J. Snaith and Thomas Bein, “Solution Deposition-Conversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells” Advanced Energy Materials, vol.4, pp. 1400355, 2014
[36] Yongzhen Wu, Ashraful Islam, Xudong Yang, Chuanjiang Qin, Jian Liu, Kun Zhang, Wenqin Penga and Liyuan Han, “Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition,” Energy & Environmental Science, vol. 7, pp. 2934, 2014
[37] Po-Wei Liang, Chien-Yi Liao, Chu-Chen Chueh, Fan Zuo, Spencer T. Williams, Xu-Kai Xin, Jiangjen Lin, Alex K.-Y. Jen, “Additive Enhanced Crystallization of Solution-Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells,” Advanced Materials, vol.7, pp. 3748-3754, 2014
[38] Jin Hyuck Heo, Sang Hyuk Im, Jun Hong Noh, Tarak N. Mandal, Choong-Sun Lim, Jeong Ah Chang, Yong Hui Lee, Hi-jung Kim, Arpita Sarkar, Md. K. Nazeeruddin, Michael Grätzel & Sang Il Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors,” Nature, vol. 7, pp.486-491, 2013
[39] Lioz Etgar, Peng Gao, Zhaosheng Xue, Qin Peng, Aravind Kumar Chandiran, Bin Liu, Md. K. Nazeeruddin, and Michael Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells,” Journal of American Chemical Society, vol. 134, pp.17396-17399, 2012
[40] Jun Hong Noh, Sang Hyuk Im, Jin Hyuck Heo, Tarak N. Mandal, and Sang Il Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Letters, vol. 13, pp. 1764-1769, 2013
[41] Agnese Abrusci, Samuel D. Stranks, Pablo Docampo, Hin-Lap Yip, Alex K.Y. Jen, and Henry J. Snaith, “High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers,” Nano Letters, vol. 13, pp.3124-3128, 2013
[42] Wei E. I. Sha, Xingang Ren, Luzhou Chen, and Wallace C. H. Cho, “The efficiency limit of CH3NH3PbI3 perovskite solar cells,” Applied Physics Letters, vol. 106, pp. 221104, 2015
[43] Anders Hagfeldt , Gerrit Boschloo, Licheng Sun , Lars Kloo , and Henrik Pettersson, “Dye-Sensitized Solar Cells,” Chemical Reviews, vol. 110, pp. 6595-6663, 2010
[44] Matt Law, Lori E. Greene, Justin C. Johnson, Richard Saykally and Peidong Yang, “Nanowire dye-sensitized solar cells,” Nature Materials, vol. 4, pp. 455-459,2005
[45] Gopal K. Mor , Karthik Shankar , Maggie Paulose , Oomman K. Varghese , and Craig A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells,” Nano Letters, vol. 6, pp. 215-218, 2006
[46] Henry J. Snaith, “Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells,” The Journal of Physical Chemistry Letters, vol. 4, pp. 3623-3630, 2013
[47] Nakita K. Noel, Samuel D. Stranks, Antonio Abate, Christian Wehrenfennig, Simone Guarnera, Amir-Abbas Haghighirad, Aditya Sadhanala, Giles E. Eperon, Sandeep K. Pathak, Michael B. Johnston, Annamaria Petrozza, Laura M. Herza and Henry J. Snaith, “Lead-free organic–inorganic tin halide perovskites for photovoltaic applications,” Energy & Environmental Science, vol. 7, pp. 3061-6068, 2014
[48] Michael Grätze, “Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology, vol. 4, pp. 145-153, 2003
[49] Michael Saliba, Kwan Wee Tan, Hiroaki Sai, David T. Moore, Trent Scott, Wei Zhang, Lara A. Estroff, Ulrich Wiesner, and Henry J. Snaith, “Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic−Inorganic Lead Trihalide Perovskites,” The Journal of Physical Chemistry, vol. 118, pp. 17171-17177, 2014
[50] Kwan Wee Tan, David T. Moore, Michael Saliba, Hiroaki Sai, Lara A. Estroff, Tobias Hanrath, Henry J. Snaith, and Ulrich Wiesner, “Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer- Directed Alumina Perovskite Solar Cells,” Acs Nano, vol. 5, pp. 4730-4739, 2014
[51] Amalie Dualeh, Thomas Moehl, Nicolas Te treault, Joe l Teuscher, Peng Gao,MohammadKhaja Nazeeruddin, and Michael Gra tzel, “Impedance Spectroscopic Analysis of Lead Iodide Perovskite-Sensitized Solid-State Solar Cells,” Acs Nao, vol. 8, pp. 362, 2014
[52] Dieter Weber, “CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur,” University of Struttgart, vol. 33b, pp. 1443-1445, 1978
[53] Guichuan Xing, Nripan Mathews,Shuangyong Sun, Swee Sien Lim, Yeng Ming Lam, Michael Grätzel, Subodh Mhaisalkar, Tze Chien Sum, “Long-Range Balanced Electronand Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3,” Science, vol. 342, pp. 344, 2013
[54] Eran Edri, Saar Kirmayer, Alex Henning, Sabyasachi Mukhopadhyay, Konstantin Gartsman, Yossi Rosenwaks, Gary Hodes, and David Cahen, “Why Lead Methylammonium Tri-Iodide Perovskite-Based Solar Cells Require a Mesoporous Electron Transporting Scaffold (but Not Necessarily a Hole Conductor),” Nano Letters, vol. 14, pp. 1000-1004, 2014
[55] Giles E. Eperon, Samuel D. Stranks, Christopher Menelaou, Michael B. Johnston, Laura M. Herz and Henry J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy & Environmental Science, vol.7, pp. 982, 2014
[56] Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang & Mercouri G. Kanatzidis, “Lead-free solid-state organic–inorganic halide perovskite solar cells,” Nature Photonics, vol. 8, pp. 489-494, 2014
[57] Maria Antonietta Loi and Jan C. Hummelen, “Hybrid solar cells: Perovskites under the Sun,“ Nature Materials, vol. 12, pp. 1087-1092, 2013
[58] Qi Wang, Yuchuan Shao, Qingfeng Dong, Zhengguo Xiao, Yongbo Yuana and Jinsong Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process,” Energy & Environmental Science, vol. 7, pp. 2359-2365, 2014
[59] Zhengguo Xiao, Cheng Bi, Yuchuan Shao, Qingfeng Dong, Qi Wang, Yongbo Yuan, Chenggong Wang, Yongli Gaobc and Jinsong Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers,” Energy & Environmental Science, vol. 7, pp. 2619-2623, 2014
[60] Zhengguo Xiao, Qingfeng Dong, Cheng Bi, Yuchuan Shao, Yongbo Yuan, Jinsong Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Advanced Materials, vol. 26, pp. 6503, 2014
[61] Jingshan Luo, Jeong-Hyeok Im, Matthew T. Mayer, Marcel Schreier, Mohammad Khaja Nazeeruddin, Nam-Gyu Park, S. David Tilley, Hong Jin Fan, Michael Grätzel, “Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts,” Science, vol. 345, pp. 1593-1596, 2014
[62] Dongqin Bi, Gerrit Boschloo, Stefan Schwarzmüller, Lei Yang, Erik M. J. Johanssona and Anders Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells,” Nanoscale, vol. 5, pp. 11686-11691, 2013
[63] Hak-Beom Kim, Hyosung Choi, Jaeki Jeong, Seongbeom Kim, Bright Walker, Seyeong Songa and Jin Young Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale, vol. 6, pp. 6679-6683, 2014
[64] Hsiang-Lin Hsu, Chih-Ping Chen, Jia-Yaw Chang, Yang-Yen Yuab and Yu-Kai Shena, “Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics,” Nanoscale, vol. 6, pp. 10281-10288, 2014
[65] Jin-Wook Lee, Dong-Jin Seol, An-Na Cho, Nam-Gyu Park, “High-Efficiency Perovskite Solar Cells Based on the Black Polymorph of HC(NH2)2PbI3,” Advanced Materials, vol. 26, pp. 4991, 2014
[66] Lingling Zheng, Yao-Hsien Chung, Yingzhuang Ma, Lipei Zhang, Lixin Xiao, Zhijian Chen, Shufeng Wang, Bo Quab and Qihuang Gong, “A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability,” Chemical Communications, vol. 50, pp.11196-11199, 2014
[67] Fuguo Zhang, Xichuan Yang, Haoxin Wang, Ming Cheng , Jianghua Zhao , and Licheng Sun, “Structure Engineering of Hole–Conductor Free Perovskite-Based Solar Cells with Low-Temperature-Processed Commercial Carbon Paste As Cathode,” American Chemistry Society, vol. 6, pp.16140-16146, 2014
[68] Wenzhe Li, Jiaoli Li, Liduo Wang, Guangda Niu, Rui Gao and Yong Qiu, “Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance,” Journal of Materials Chemistry, vol. 1, pp. 11735-11740, 2013
[69] Guichuan Xing, Nripan Mathews, Shuangyong Sun, Swee Sien Lim, Yeng Ming Lam, Michael Grätzel, Subodh Mhaisalkar, Tze Chien Sum, “Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3,” Science, vol. 342, pp. 344-347, 2013
[70] Jun Hong Noh, Nam Joong Jeon, Yong Chan Choi, Md. K. Nazeeruddin, Michael Grätzel and Sang Il Seok, “Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material,” Journal of Materials Chemistry, vol. 1, pp. 11842-11847, 2013
[71] Jian Liu, Yongzhen Wu, Chuanjiang Qin, Xudong Yang, Takeshi Yasuda, Ashraful Islam, Kun Zhang, Wenqin Peng, Wei Chena and Liyuan Han, “A dopant-free hole-transporting material for efficient and stable perovskite solar cells,” Energy and Environmental Science, vol. 7, pp. 2963-2967, 2014
[72] Sigalit Aharon , Bat El Cohen , and Lioz Etgar, “Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell,” Journal of Physical Chemistry, vol. 118, pp. 17160-17165, 2014
[73] Waleed Abu Labana and Lioz Etgar, “Depleted hole conductor-free lead halide iodide heterojunction solar cells,” Energy and Environmental Science, vol. 6, pp. 3249-3253, 2013
[74] Stefaan De Wolf , Jakub Holovsky , Soo-Jin Moon, Philipp Löper , Bjoern Niesen , Martin Ledinsky , Franz-Josef Haug , Jun-Ho Yum , and Christophe Ballif, “Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance,” The Journal of Physical Chemistry, vol. 5, pp. 1035-1039, 2014
[75] Eran Edri , Saar Kirmayer , David Cahen , and Gary Hodes, “High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite,” The Journal of Physical Chemistry, vol. 4, pp. 897-902, 2013
[76] Konrad Wojciechowski, Michael Salib, Tomas Leijtens, Antonio Abate and Henry J. Snaith, “Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy and Environmental Science, vol. 7, pp. 1142-1147, 2014
[77] http://www.nrel.gov/
[78] Kuo-Chin Wang, Po-Shen Shen, Ming-Hsien Li, Shi Chen, Ming-Wei Lin, Peter Chen, and Tzung-Fang Guo, “Low-Temperature Sputtered Nickel Oxide Compact Thin Film as Effective Electron Blocking Layer for Mesoscopic NiO/CH3NH3PbI3 Perovskite Heterojunction Solar Cells,” Applied Materials, vol. 6, pp. 11851-11858, 2014
[79] Kuo-Chin Wang , Jun-Yuan Jeng , Po-Shen Shen , Yu-Cheng Chang , Eric Wei-Guang Diau , Cheng-Hung Tsai , Tzu-Yang Chao , Hsu-Cheng Hsu , Pei-Ying Lin , Peter Chen, Tzung-Fang, “p-type Mesoscopic Nickel Oxide/ Organometallic Perovskite Heterojunction Solar Cells,” Nature, vol. 4, pp. 1, 2014
[80] Long Hu, Jun Peng, Weiwei Wang, Zhe Xia, Jianyu Yuan, Jialing Lu, Xiaodong Huang, Wanli Ma, Huaibing Song, Wei Chen, Yi-Bing Cheng, and Jiang Tang, “Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells,” Applied Materials, vol. 1, pp. 547-553, 2014
[81] E. L. Ungera, E. T. Hoke, C. D. Bailiea, W. H. Nguyenc, A. R. Bowring, T. Heumüller, M. G. Christoforod and M. D. McGeheea, “Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells,” Energy and Environmental Science, vol. 00, pp. 1-3, 2013
[82] Jixian Xu, Andrei Buin, Alexander H. Ip, Wei Li, Oleksandr Vozny, Riccardo Comin, Mingjian Yuan, Seokmin Jeon, Zhijun Ning1, Jeffrey J. McDowell, Pongsakorn Kanjanaboos, Jon-Paul Sun, Xinzheng Lan, Li Na Quan, Dong Ha Kim, Ian G. Hill, Peter Maksymovych & Edward H. Sargent, “Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes,” Nature, vol. 8081 , pp. 1 , 2015
[83] Yuchuan Shao, Zhengguo Xiao, Cheng Bi, Yongbo Yuan & Jinsong Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells,” Nature, vol. 6784, pp. 1, 2014
[84] W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, Mohammad Khaja Nazeeruddin and M. Gr¨atzel, “Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field,” Science, vol. 8, pp. 995-1004, 2015
[85] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung and C. C. Chang, “Blocking reactions between indium-tin oxide and poly (3,4-ethylene dioxythiophene):poly(styrene sulphonate) with a self-assembly monolayer,” Applied Physical Letters, vol. 82, pp. 2788, 2002
[86] Norrman K, Madsen MV, Gevorgyan SA, Krebs FC, “Degradation patterns in water and oxygen of an inverted polymer solar cell,” Chemical Society, vol. 132, pp. 16883-16892, 2010
[87] Hin-Lap Yipa, Alex K.-Y. Jen, “Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells,” Energy and Environmental Science, vol. 5, pp. 5994-6011, 2012
[88] Kang-Shyang Liao , Soniya D. Yambem , Amrita Haldar , Nigel J. Alley , Seamus A. Curran, “Designs and Architectures for the Next Generation of Organic Solar Cells,” Energies, vol. 3, pp. 1212, 2010
[89] Christoph J. Brabec, Sean E. Shaheen, Christoph Winder, N. Serdar Sariciftci1 and Patrick Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells,” Applied Physical Letters, vol. 80, pp.1288, 2002
校內:2020-08-21公開