簡易檢索 / 詳目顯示

研究生: 劉峻辰
Liu, Jun-Chen
論文名稱: Ad-hoc網路吞吐量最佳化
Optimization of Ad-hoc network's throughput
指導教授: 郭文光
Kuo, Wen-Kuang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 29
中文關鍵詞: 最佳化Ad-hoc網路
外文關鍵詞: Optimization, Ad-hoc network
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於通訊網路的蓬勃發展,相對的對於能源的需求是越來越大,但是在這能源日漸短缺且昂貴的現在,本篇論文主要探討的是Ad-hoc網路的吞吐量最佳化,利用跨層最佳化的概念去針對網路的流量分配、排程與功率控制等方法讓效率可以更好。原本的網路模型是NP-hard的混合整數非線性規劃問題,將其全部轉換成多項式最佳化問題(Polynomial optimization problem簡稱POP),利用工具將POP問題轉成SDP(Semidefinite programming,半正定規劃)問題去直接求解。但是最後結果發現無法找到接近0-1整數的最佳解。

    In the recent years, the energy demand is growing. The energy is shortage and expensive. We focus on the Optimization of Ad-hoc network's throughput. We Consider Flow distribution、Scheduling and Power Control base on the concept of cross-layer optimization. The original problem is a mixed-integer nonlinear programming . We transform it into a Polynomial optimization problem, and use some MATLAB package to transform the POP form into Semidefinite programming(SDP) form. Finally we cannot get the optimal solution with the integer 0-1.

    目錄 第一章 簡介---------------------------------------------1 第二章 網路架構與限制條件---------------------------------3 2.1 Ad-hoc網路系統……………………………………………………………3 2.2 限制條件………………………4 2.2.1 時間排程……………………………6 2.2.2 功率控制……………………………6 2.2.3 通道容量限制………………………7 2.2.4 路由…………………………………8 2.3 最佳化模型……………………9 第三章 求解程序------------------------------------------11 3.1 Chebyshev 多項式近似…………………………11 3.2 半正定規劃…………………………………………13 3.2.1 Lasserre 多項式規劃的dense SDP放鬆……14 3.2.2 Primal-Dual內點法……………………………17 3.2.3弦圖與Cholesky分解……………………………23 3.2.4多項式最佳化問題的稀疏半正定規劃放鬆……24 第四章 數據模擬結果---------------------------------26 第五章 結論----------------------------------------27 參考文獻--------------------------------------------28

    [1] Sunyoung Kim and Masakazu Kojima, Exploiting Sparsity in SDP Relaxation of Polynomial Optimization Problems
    [2] Numerical Recipes Software, numerical recipes in c the art of scientific computing, 5.8 Chebyshev Approximation
    [3] Yi Shi, Member, IEEE, Y. Thomas Hou, Senior Member, IEEE, and Huaibei Zhou, Per-Node Based Optimal Power Control for Multi-hop Cognitive Radio Networks, IEEE Transactions on Wireless Communications, vol. 8, no.10
    [4]R. M. et al. Cross-layer design for lifetime maximization in interference-limited wireless sensor networks. IEEE Infocom, 2005.
    [5]M. L. Sichitiu. cross-layer scheduling for power e_ciency in wireless sensor networks. IEEE Infocom,2004.
    [6]M. Chiang. To layer or not to layer: Balancing transport and physical layers in wireless multihop networks. IEEE Infocom, 4, 2004.
    [7]L. Bui, A. Eryılmaz, and R. Srikant. Joint asynchronous congestion control and distributed scheduling for multi-hop wireless networks. Department of Electrical and Computer Engineering.
    [8]L. Chen, S. H. Low, M. Chiang, and J. C. Doyle. Optimal cross-layer congestion control, routing and scheduling design in ad hoc wireless network.
    [9]B. Johansson, P. Soldati, and M. Johansson. Mathematical decomposition techniques for distributed cross-layer optimization of data networks. IEEE Journal on Selected Areas in Communications
    [10]M. Johansson and L. Xiao. Cross-layer optimization of wireless networks using nonlinear column generation. IEEE Transactions on Wireless Communications
    [11]S. J. Kim, X. Wang, and M. Madihian. Cross-layer design of wireless multihop backhaul networks with multiantenna beamforming. IEEE Trans. Mob. Comput
    [12]J. Papandriopoulos, S. Dey, and J. Evans. Optimal and distributed protocols for cross-layer design of physical and transport layers in manets. IEEE Trans. on Networking
    [13] H. Waki, S. Kim,M. Kojima, M. Muramatsu, H. Sugimoto and M. Yamashita User Manual for SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems
    [14] Hayato Waki¤, Sunyoung Kimy, Masakazu Kojimaz, Masakazu Muramatsux ,
    Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity
    [15] Hayato Waki, Sunyoung Kim,Masakazu Kojima and Masakazu Muramatsu SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems
    [16] Zai-En Hou,, Ke-Cun Zhang . Approximation of multivariate function by using new multivariate Bernstein a-polynomials
    [17] Kamron Saniee .A Simple Expression for Multivariate Lagrange Interpolation

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE