| 研究生: |
詹雅涵 Chan, Yahan |
|---|---|
| 論文名稱: |
Ca3Sc2-xMxSi3O12:Ce3+ (M = Y3+, Al3+, Zn2+)螢光粉體結構與光致發光性質之研究 Structural and Photo-luminescent Properties of Ca3Sc2-xMxSi3O12:Ce3+ (M = Y3+, Al3+, Zn2+) Phosphors |
| 指導教授: |
陳引幹
Chen, In-Gann |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 螢光粉 、晶格場分裂 、光致發光 、量子效率 、多重聲子緩解 |
| 外文關鍵詞: | Phosphor, Crystal filed splitting, Photo-luminescent, Quantum efficiency, Multi-phonon relaxation |
| 相關次數: | 點閱:86 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以固態反應法製備Ca3Sc2Si3O12:Ce3+ 與Ca3Sc2-xMxSi3O12:Ce3+(M = Y3+, Al3+, Zn2+)螢光粉,探討不同離子摻雜於Ca3Sc2Si3O12:Ce3+中對螢光粉結構與發光性質之影響。此螢光粉可以450 nm藍光激發,發光波長範圍約在460 ~ 650 nm之間。
研究結果顯示,以Y3+(104.0 pm)取代在Sc3+(88.5 pm)的八面體位置會撐大晶格,晶格常數增加(+0.179%),當x ≧ 0.1時,XRD始有未知相生成;藉由FTIR光譜與Raman光譜結果顯示Y3+確實可取代Sc3+位置;然而,因Y3+摻雜使晶格被撐大,影響活化中心Ce3+周圍晶格之對稱性,降低Ce3+晶格場分裂程度,發光波長逐漸藍位移。
摻雜Al3+(67.5 pm)可減少因固態法反應不均勻的Sc2O3雜相殘留,提升螢光粉的結晶性;藉由FTIR光譜與Raman光譜的結果可證實Al3+確實可取代於Sc3+位置;以Al3+離子取代Sc3+位置使晶格常數減小(- 0.177%),增加Ce3+晶格場分裂程度,發光波長逐漸紅位移;Al3+摻雜使衰減時間減小,表示隨著Al3+摻雜可加速非輻射緩解,降低能量損耗而增強PL發光強度與量子效率。
Zn2+離子(88.0 pm)與Sc3+(88.5 pm)離子半徑相當,由XRD與晶格常數結果發現,摻雜Zn2+於晶格中對結構影響較小,(-0.05 %);藉由FTIR光譜與Raman光譜的結果可證實Zn2+確實取代於Sc3+位置;然而此系列中有較多的Sc2O3雜相殘留,導致PL發光強度與量子效率降低。
The study is to synthesize and discuss the structural and photo-luminescent properties of Ca3Sc2Si3O12:Ce3+ and Ca3Sc2-xMxSi3O12:Ce3+(M = Y3+, Al3+, Zn2+)phosphors by prepared solid state reaction method. The Ca3Sc2Si3O12:Ce3+ phosphors emit green light ranging from 460 nm to 650 nm by blue light(about 450 nm)excitation.
The lattice constant could be increased about 0.179% by using Y3+ion(Ion radius = 104.0 pm)to substitute for Sc3+(Ion radius = 88.5 pm)ion. Some unknown phase appear when doping content x of Y3+ is larger than 0.1. The results of FTIR and Raman show that the Sc3+ ion is actually substituted by Y3+ ion, which result in decreasing the crystal-field splitting of Ce3+, and the PL wavelength is blue-shifted gradually.
Doping Al3+ ion in Ca3Sc2Si3O12:Ce3+ can decrease the quantity of impurity phase Sc2O3 and improve the crystallinity. The lattice constant could be decreased about 0.177% by using Al3+(Ion radius = 67.5 pm)to substitute for Sc3+ ion. The results of FTIR and Raman show that the Sc3+ ion is actually substituted by Al3+ ion, which result in increasing the crystal-field splitting of Ce3+ and the PL wavelength is red-shifted. The PL intensity and quantum efficiency can be enhanced by doping Al3+ in Ca3Sc2Si3O12:Ce3+ phosphors. It is because doping Al3+ ion can speed up the multi-phonon rate and decrease the energy loss during energy transfer.
The lattice constant decrease slightly(- 0.05 %)due to the fact that the ion radius of Zn2+(Ion radius = 88.0 pm)is almost equal to Sc3+ ion radius. The results of FTIR and Raman show that the Zn2+ion actually substitute for Sc3+ ions. However, more Sc2O3 impurity phase exists in these Ca3Sc2Si3O12:Ce3+, Zn2+ phosphor, which decreases the PL intensity and quantum efficiency.
參考文獻
[1] http://en.wikipedia.org/wiki/LED
[2] 許宗榮,“白光LED製作技術”, 工業材料雜誌, 220, 148-151(2005)
[3] 康佳正、劉如熹、廖秋峰, “LED照明光源展望(六);可被UVLED激發之螢光體介紹”, 工業材料雜誌, 232, 145(2006)
[4] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “ Illumination with solid state lighting technology,” IEEE J. Sel. Topics Quantum Electron., 8, 310-320(2002)
[5] Y. Shimomura, T. Honma, M. Shigeiwa, T. Akai, K. Okamoto, and N. Kijimaa.,” Photoluminescence and Crystal Structure of Green-Emitting Ca3Sc2Si3O12:Ce3+ Phosphor for White Light Emitting Diodes.” J. Electrochem. Soc., 154, 1, J35-J38(2007)
[6]劉如熹、林群哲, “高演色性白光LED螢光粉材料近況發展”, 工業材料雜誌, 258, 227-233(2008)
[7] J. E. Huheey, R. L. Keiter, and E. A. Keiter, “Inorganic chemistry: principles of structure and reactivity”, HarperCollins College Publishers, New York(1993)
[8] D.R.Vij, “Luminescence in Solids” Plenum press, New York(1998)
[9] http://micro.magnet.fsu.edu/optics/timeline/people/jablonski.html
[10] H. S. Nalwa, L. S. Rohwer, “Handbook of Luminescence, Display Materials, and Devices-Inorganic Display Materials”, American Scientific Publishers(2003)
[11] S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma and Q.Y. Zhang, “Phosphors in Phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties”, Mater. Sci. Eng. Rep. 71, 1, 1–34(2010)
[12] 李育群, “鍺酸鹽LaAlGe2O7螢光粉光致發光特性研究“, 國立成功大學材料科學及工程學系博士論文(2007)
[13]劉如熹、紀喨勝, 紫外光發光二極體用螢光粉介紹,全華科技(2003)
[14] J. R. Lakowicz, “Principle of Fluorescence Spectroscopy”, Kluwer Academic/Plenum Pub, New York(1999)
[15] P. Goldberg, “Luminescence of Inorganic Solids”, Academic Press Inc., New York(1966)
[16]W. M. Yen, S. Shionoya, and H. Yamamoto, ”Phosphor handbook”, CRC press, Boca Raton,168-172(2007)
[17]周公度、段連運, ”結構化學基礎”, 淑馨出版社, 221, 1997
[18]B. Henderson and G. F. Imbusch, “Optical spectroscopy of inorganic solids”, Clarendon Press, Oxford, 68-77(1989)
[19] 江建志, “鈰活化石榴石系列螢光粉體結構與特性:, 國立成功大學材料科學及工程學系博士論文(2009)
[20] 葉涵青, “新穎三價鈰與兩價銪離子活化多矽酸鹽螢光體之製備、發光特性與能量轉移之研究”, 國立交通大學應用化學研究所碩士論文(2009)
[21] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, G. Chandran, H. Aiyer, MV. Shankar, and S. E.Weaver, “Ce3+ Based Phosphors for Blue LED Excitation”, Proceedings of SPIE, 5187, 142-149(2004)
[22] R. C. Ropp, “Luminescence and the Solid State-2nd Edition“, Elsevier Science(2004)
[23] 張永政, “矽酸鹽Na3YSi2O7系螢光粉之製備與光致發光特性研究”, 國立成功大學材料科學及工程學系博士論文(2010)
[24] P. Atkins and L. Jones, “Chemistry molecules, Matter, and Change 3rd edition“, W. H. Freeman(1997)
[25]蘇鏘, 稀土化學, 河南科學技術出版社(1993)
[26]蘇鏘, 稀土化學, 清華大學出版社, 北京(2000)
[27] G. Blasse, "Handbook on the Physics and Chemistry of Rare Earths", North Holland, 4, 237(1979)
[28] T. Hoshina, “Luminescence of Rare Earth Ions”, Sony Research Center Rep., 1983
[29] 盧宗衡, “摻雜矽與鈰之YAG螢光粉的擴散與發光性質研究”, 國立成功大學材料科學及工程學系碩士論文(2008)
[30] 吳佳穎, “不同氣氛控制下所合成之(Y1-xTbx)3Al5O12固溶體的晶體結構與螢光性質”, 國立成功大學資源工程研究所碩士論文(2009)
[31] 黃恩萍, “角閃石類礦物之拉曼光譜研究”, 國立成功大學地球科學研究所碩士論文(2003)
[32] Hitachi High Technologies, Inc. “Quantum yield measurement of Sodium Salicylate”(2010)
[33] J. C. de Mello, H. F. Wittmann and R. H. Friend, “An Improved Experimental Determination of External Photoluminescence Quantum Efficiency” , Adv. Mater., 9, 3 ,230-232(1997)
[34]呂東原,“二六族化合物半導體量子結構之光學特性研究”,國立海洋大學光電科學研究所碩士論文(2005)
[35] G. Blasse and B. C. Grabmaier, “Luminescent Materials”, Springer Verlag, Berlin Heidelberg, Germany(1994)
[36] Z. Lou and J. Hao, “Cathodoluminescence of rare-earth-doped zinc aluminate films”, Thin Solid Films, 450, 2, 334–340(2004)
[37] M. S. Peng, H. K. Mao, Dien Li and E. C. Chao, “Raman Spectroscopy of Garnet-group Minerals”, Chinese Journal of Geochemisty, 13, 2, 176 -183(1994)
[38] S. Geller, “Crystal chemistry of the garnets”, ZeitschriftfUr Kristallographie, 125, 1-47(1967)
[39]鄭兆祺, “(Y1-xTbx)2.97Ce0.03Al5O12 螢光粉之型態、晶體結構、與螢光特性”, 國立成功大學資源工程研究所碩士論文(2008)
[40] A. A. Setlur, W. J. Heward, Y.Gao, A. M. Srivastava, R. G. Chandran, and M. V. Shankar, “Crystal Chemistry and Luminescence of Ce3+-Doped Lu2CaMg2(Si,Ge)3O12 and Its Use in LED Based Lighting” Chem. Mater., 18, 3314-3322(2006)
[41] Y. Suzuki, M. Kakihana, Y. Shimomura, and N. Kijima, “Synthesis of Ca3Sc2Si3O12:Ce3+ phosphor by hydrothermal Si alkoxide gelation”, J Mater Sci., 43, 7, 2213-2216(2008)
[42] Y. Shimomura, T. Kurushima, M. Shigeiwa, and N. Kijima, “Redshift of Green Photoluminescence of Ca3Sc2Si3O12:Ce3+ Phosphor by Charge Compensatory Additives”, J. Electrochem. Soc., 155, 2, J45-J49(2008)
[43] Y. Liu, J. Hao, W. Zhuang and Y. Hu, “Structural and luminescent properties of gel-combustion synthesized green-emitting Ca3Sc2Si3O12 :Ce3+ phosphor for solid-state lighting”, J. Phys. D: Appl. Phys., 42, 24, 245102(2009)
[44] Y. Chen, M. Gong, K. W. Cheah, “Effects of fluxes on the synthesis of Ca3Sc2Si3O12:Ce3+ green phosphors for white light-emitting diodes", Mater. sci. eng B-adv., 166, 1, 24–27, 2010
[45]Y. Liu, W. Zhuang, Y. Hu, and W. Gao, “Improved photoluminescence of green-emitting phosphor Ca3Sc2Si3O12:Ce3+ for white light emitting diodes”, J. Rare Earth., 28, 2, 181-184(2010)
[46] Shikao Shi, Jing Gao, and Ji Zhoub, “Promising Red Phosphors(Ca, Eu, M)(WO4)1-z(MoO4)z(M = Mg, Zn)for Solid-State Lighting”, J. Electrochem. Soc., 155, 7, H525-H528(2008)
[47] B. Vengala Rao, Y. T. Nien, T. H. Lu, and I. G. Chen, “Effect of Calcination Temperature and Concentration on Luminescence Properties of Novel Ca3Y2Si3O12: Eu Phosphors”, J. Am. Ceram. Soc., 92, 12, 2953–2956(2009)
[48] Y. Wang, X. Sun and G. Qiu, “Synthesis of Scandium Oxide Nano Power and Fabrication of Transparent Scandium Oxide Ceramics”, J. Rare Earth, 25, 68-71(2007)
[49]李玄閔、陳威宇、吳佳穎、黃啟原, “釔-鋱鋁石榴石(YAG-TAG)螢光粉合成、結構及其螢光特性之研究”, 中華民國陶業研究學會會刊, 27, 4, 42-52(2008)
[50] F. Piccinelli, A. Speghini, G. Mariotto, L. Bovo and M. Bettinelli, “Visible luminescence of lanthanide ions in Ca3Sc2Si3O12 and Ca3Y2Si3O12”, J. Rare Earth, 27, 4, 555-559(2009)
[51] B. Manoun and D. de Waal, R.K.W. Merkle, “The crystal chemistry and Raman spectroscopy of kimberlitic (G-9) garnets”, Crystal Engineering, 4, 283–291(2001)
[52] B.A. Kolesov and C.A. Geiger, “Raman spectra of silicate garnets”, Phys. Chem. Minerals, 25, 142-151(1998)
[53] J. L. Wu, G. Gundiah and A.K. Cheetham, “Structure-property correlations in Ce-doped garnet phosphors for use in solid state lighting”, Chem. Phys. Lett., 441, 4-6, 250–254(2007)
[54] R. Schmechel, H. Winkler, Li Xaomao, M. Kennedy, M. Kolbe, A. Benker, M. Winterer, R. A. Fischer, H. Hahn and H. von Seggern, “ Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environments”, Scripta Mater., 44, 8-9, 1213-1217(2001)
[55] B. Liu, M. Gu, X. Liu, K. Han, S. Huang, C. Ni, G. Zhang, and Z. Qi ,” Enhanced luminescence through ion-doping-induced higher energy phonons in GdTaO4:Eu3+ phosphor”, Appl. Phys. Lett., 94, 061906(2009)
[56] http://mtdatasoftware.tech.officelive.com/dgox3.htm
校內:2016-08-25公開