簡易檢索 / 詳目顯示

研究生: 陳俊德
Chen, Chun-Te
論文名稱: 雷射與惰性氣體鎢極銲接溫度場對沃斯田鐵系合金敏化之研究
Effects of Temperature Field on Sensitization of Austenitic Alloys in Laser Beam and Gas Tungsten Arc Welding Processes
指導教授: 李驊登
Lee, Hwa-Teng
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 122
中文關鍵詞: 鎳基690 合金銲接熱循環曲線溫度分佈敏化程度沿晶腐蝕應力腐蝕
外文關鍵詞: Finite element method, Sensitization, Heat-affected zone, Transient temperature field, Welding thermal cycle, Laser beam welding, Gas tungsten arc welding
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之主要目的為探討鎳基Alloy 690合金及AISI 304不銹鋼銲接熱循環曲線和溫度分佈結果,其與敏化(Sensitization)相關性,以建立LBW 與GTAW兩銲接製程之峰值溫度、加熱速率、冷卻速率及溫度分佈,對Alloy 690合金及AISI 304不銹鋼銲件之抗沿晶腐蝕(IGC)的影響。因此,採用GTAW及雷射兩種不同銲接製程,對鎳基Alloy 690合金及AISI 304不銹鋼進行實際水平對接銲(Butt Welding)實驗,經由銲接過程中精確地量測銲件各點所經歷的銲接熱循環曲線和溫度分佈,探討銲接溫度場之熱循環對銲件熱影響區敏化現象所造成的影響。接著,配合JMatPro冶金資料庫所得之熱物理性質,使用ANSYS軟體平台,進行銲接移動熱源之銲接溫度場數值計算模擬,並藉由其結果與真實銲接實驗比對,以確認其一致性,達成預測銲接敏化之位置及範圍之目標。
    實驗結果顯示:銲接時,由於LBW製程功率密度高達104~105 W/mm2,因此加熱速率非長高,連帶產生非常快之冷卻速率與,故相較於GTAW 銲道,LBW 銲道則具有較細緻的枝晶結構與較高的硬度值。在Alloy 690抗腐蝕測試方面,由改良式惠式試驗結果表明,相較於GTAW 銲件,LBW試件銲道與銲接衰化區皆具有顯著抵抗沿晶腐蝕與枝晶間腐蝕(IDC)的能力。這是因為在LBW 銲道與銲接衰化區處皆具有非常高的冷卻速率,導致通過Cr23C6碳化物析出溫度範圍620~1020°C 的時間不足,只為1.2~1.6秒,大幅抑制了碳化物析出和沿晶界缺鉻區出現之所致。在AISI 304方面,藉由ASTM 262 A抗腐蝕試驗顯示:GTAW銲件經由第二道次銲接熱履歷後,銲件的HAZ有IGC現象產生,且其敏化鋒值溫度範圍為500~960 oC,銲件HAZ在最低IGC溫度範圍加熱及冷卻時間為67.2秒,相對而言,GTAW第一道次銲件及LBW之銲件HAZ在敏化溫度範圍加熱及冷卻時間較短,分別為34.2秒及1.6秒,兩者僅有輕微孔蝕(pitting)現象,並未有IGC現象產生。此外,銲接模擬時,以非線性模擬方式所得結果較以常溫之熱物理性質模擬結果一致性較佳,而銲接走速高的LBW其因冷卻速度快,採用線性與非線性熱物理性質模擬差異較小。使用模擬銲接暫態溫度場模式,可以提供一種可靠的方式來預測及估計銲接後,HAZ敏化的位置及範圍,以避免銲接敏化或提供銲接敏化修補方法(雷射表面處理, LSM or LSP)參考。

    This study initially investigated the effects of the temperature field within Alloy 690 and AISI 304 butt welds fabricated using the two-pass gas tungsten arc welding (GTAW) and the laser beam welding (LBW) methods, respectively. Precise measurements were taken of the welding thermal cycles (i.e., the peak temperature, the heating rate and the cooling rate) and temperature distributions (i.e., temperature gradient) continuously at various points of the weldments during GTAW and LBW processes. In addition, the welding thermal cycles of the two welding methods were simulated using ANSYS software based upon a moving heat source model, and the high-temperature thermal physical property data were derived in the JMatPro database. The validity of the numerical model was confirmed by comparing the simulation results with the corresponding experimental findings. The resulting thermal cycle and temperature distribution profiles were then correlated with sensitization, with an aim to study and establish the combined influences of peak temperature, heating rate, cooling rate, and temperature distribution on the intergranular corrosion (IGC) resistance of weldments.
    The results showed that for the butt welding specimens, the LBW process, with a power density as high as 104~105 W/mm2, has significantly lower heat input (131J/mm) on the weldment than the GTAW process (936J/mm for Alloy 690, 1330J/mm for AISI 304), which provides a very steep temperature distribution and a very high heating rate and cooling rates. As a result, the modified Huey test results revealed that in the LBW weldment, compared with the GTAW weldment, IGC was significantly arrested in the WDZ. This occurred because the very rapid cooling rates in the FZ and WDZ during welding led to an insufficient exposure time of around 1.2~1.6s through the Cr23C6 carbide precipitation temperature range of 620~1020°C, suppressing Cr-carbide precipitation and Cr-depletion along grain boundaries in the FZ and WDZ, respectively. Results showed that the LBW technique significantly improved the ICC resistance of Alloy 690 weldments. Oxalic acid etch test results have shown that the region of the HAZ in the 2nd pass of the AISI 304 GATW weldment is susceptible to IGC. It was also found that the range of the peak temperature of the sensitization is between 500 and 960oC. In contrast, there was no evidence of IGC in the 1st pass of GTAW and LBW weldments. The total durations of heating and cooling of the HAZ in the 1st pass of GTAW and LBW weldments wrer 34.2 and 1.6 seconds, after which there was no evident IGC ditch structure. In the 2nd pass weldment, however the total heating and cooling duration was 67.2 seconds, and a ditch structure (indicating IGC) was quite evident. In conclusion, the simulated transient temperature fields of the FEM models provide a reliable and convenient means of estimating the range and size of the sensitization zone following welding, and therefore should facilitate the subsequent alteration or repair of the IGC-affected weldments using LSM or LSP methods.

    中文摘要 Ⅰ 英文摘要 Ⅲ 誌謝 Ⅴ 總目錄 Ⅵ 表目錄 X 圖目錄 XⅠ 符號表 XⅤ 英文縮寫對照表 XⅥ 第一章 前言 1 1.1. 背景分析 1 1.2. 文獻回顧 5 1.3. 研究動機及目的 11 第二章 相關理論分析 13 2.1. 銲接溫度場 13 2.1.1. 能量方程式 13 2.1.2. 傅立頁熱傳方程式 13 2.1.3. 熱傳方程式 13 2.1.4. Rosenthal’s model解析解 14 2.1.5. 熱源模式 15 2.1.6. 初始與邊界條件 18 2.1.7. 無限長板的移動線熱源 20 2.1.8. 無限長板的快速移動高功率熱源 22 2.1.9. 典型熱循環曲線 23 2.2. 惰性氣體鎢棒電弧銲接 24 2.3. 雷射銲接 26 2.3.1. 雷射銲接原理 27 2.3.2. Nd:YAG與CO2 雷射銲接 27 2.3.3. Keyhole mode & Conduction mode 28 2.3.4. Marangoni 效應對銲深之影響 29 2.3.5. 保護氣體 29 第三章 實驗方法與有限元素分析 32 3.1. 實驗方法 32 3.1.1. 母材 33 3.1.2. 惰性氣體鎢棒電弧銲接實驗 34 3.1.3. 雷射銲接 37 3.1.4. 銲接時溫度場及熱循環履歷 38 3.1.5. 微結構觀察與分析 41 3.1.6. 抗腐蝕測試 42 3.1.7. TTT圖及CCT圖計算 45 3.1.8. 碳化物型態 47 3.2. 銲接溫度場之有限元素分析 48 3.2.1. 基本假設 48 3.2.2. 有限元素模型之元素選用 49 3.2.3. 元素的生成與消失 50 3.2.4. 模型建立 50 3.2.5. 初始及邊界條件設定 52 3.2.6. 時間步長與網格劃分 52 3.2.7. 元素的相容性 55 3.2.8. 邊界條件 57 3.2.9. 材料常數 57 3.2.10. 程式設計流程圖 61 3.3實驗儀器與設備 62 3.3.1. GTAW 銲接設備 62 3.3.2. Nd-YAG雷射系統 62 3.3.3. 掃描式電子顯微鏡 64 3.3.4. 光學顯微鏡 65 3.3.5. 資料記錄器及資料擷取系統 66 第四章 結果與討論 67 4.1. 銲接敏化溫度之界定 67 4.1.1. Alloy 690 67 4.1.2. AISI 304 68 4.2. 銲道暫態溫度場與銲道斷面形狀之比較 71 4.2.1. 氣體鎢極電弧銲 71 4.2.2. 雷射銲接 74 4.3. 銲道暫態溫度場與銲接敏化範圍之比對 77 4.3.1. Alloy 690 GTAW 77 4.3.2. AISI 304 GTAW 80 4.3.3. Alloy 690 LBW 84 4.3.4. AISI 304 LBW 86 4.4. 銲接溫度場實驗量測與模擬結果之比較 88 4.4.1. Alloy 690 GTAW 88 4.4.2. AISI 304 GTAW 90 4.4.3. Alloy 690 LBW 93 4.4.4. AISI 304 LBW 93 4.5. 銲接熱影響區峰值溫度之比較 95 4.5.1. Alloy 690 95 4.5.2. AISI 304 97 4.6. 銲接敏化時間計算 99 4.6.1. Alloy 690 GTAW 99 4.6.2. AISI 304 GTAW 100 4.6.3. Alloy 690 LBW 102 4.6.4. AISI 304 LBW 105 4.7. Alloy 690與AISI304之銲接敏化溫度場之比較 107 4.7.1 銲接敏化條件之比較 107 4.7.2 碳化物析出條件之比較 109 第五章 結論與未來研究建議方向 112 5.1. 結論 112 5.2. 未來研究建議方向 114 參考文獻 115

    1. M. J. Povich, "Low Temperature Sensitization of Type 304 Stainless Steel," Corrosion, Vol. 34, No. 2,February 1978, pp. 60-65.
    2. M. J. Povich and P. Rao, "Low Temperature Sensitization of Welded Type 304 Stainless Steel,"Corrosion, Vol.34, 1978, pp. 269-275.
    3. P. M. Scott, "An overview of materials degradation by stress corrosion in PWRs." Corrosion Issues in Light Water Reactors: Stress Corrosion Cracking, ed. J.M.O. D. Féron, 2007, Woodhead, England.
    4. K. Ahluwalia and C. King, "Materials reliability program: review of stress corrosion cracking of alloys 182 and 82 in PWR primary water service (MRP-220)", Technical report. 2007 October.
    5. W. Bamford, J. Hall, T. R. Allen and P. J. King. "Cracking of alloy 600 nozzle and welds in PWRs: Review of cracking events and repair service experience," in Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors-TMS,, Salt Lake City, USA, 2005, pp. 959–965.
    6. K. Okimura et al., "Maintenance technologies for SCC which support stable operations of pressurized water reactor power plants". 2006.
    7. G. Frederick and A. Mcllree, Materials reliability program: selection of materials and fabrication of weldments for investigation of PWSCC susceptibility in the alloy 600 and 690 weld heat affected zones(MRP-161). 2006 March, EPRI Technical report Palo Alto, CA.
    8. J. Hickling, A. Ahluwalia et al., Advanced testing techniques to measure the PWSCC resistance of alloy 690 and its weld metals. 2004 October, Technical report 1011202, EPRI, Palo Alto, CA, and U.S. Department of Energy, Washington.
    9. C. P. King, et al., Materials reliability program PWSCC of alloy 600 type materials in non-steam generator tubing applications - survey report through June 2002: part 1: in PWSCC in components other than CRDM/CEDM penetrations (MRP-87). 2003.June, EPRI,Technical report, Palo Alto, CA.
    10. D. L. Harrod, R. E. Gold and R. J. Jacko, "Alloy optimization for PWR steam generator heat-transfer tubing," JOM Journal of the Minerals, Metals and Materials Society, Vol.53, 2001, pp. 14–17.
    11. ANSYS. 2010, Southpointe 275 Technology Drive Canonsburg
    12. JMatPro. 2007, Thermotech Sente Software.
    13. M. K. Ahn, H. S. Kwon and J. H. Lee, "Predicting susceptibility of alloy 600 to intergranular stress corrosion cracking using a modified electrochemical potentiokinetic reactivation test," Corrosion Vol.51, 1995, pp. 441–449.
    14. V. Čihal, "Intergranular Corrosion of Steels and Alloys," 1984, Amsterdam, Elsevier.
    15. J. J. Kai, C. H. Tsai, T.A. Huang and M. N. Liu, "The effects of heat treatment on the sensitization and SCC behavior of INCONEL 600 alloy," Metall. Mater. Trans. A Vol.20A, 1989, pp. 1077–1088.
    16. J. J. Kai, G.. P. Yu, C. H. Tsai, M. N. Liu and S. C. Yao, "The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690," Metall. Mater. Trans. A, Vol.20A, 1989, pp. 2057–2067.
    17. R. A. Page and A. Mcminn, "Relative stress corrosion susceptibilities of alloys 690 and 600 in simulated boiling water reactor environments,," Metall. Mater. Trans. A., Vol.17A, 1986, pp. 877–887.
    18. G.. S. Was, H. H. Tischner and R. M. Latanision, "The influence of thermal treatment on the chemistry and structure of grain boundaries in inconel 600," Metall. Mater. Trans., Vol.12A 1981, pp. 1397–1408.
    19. M. Casales, V. M. Salinas-Bravo, A. Martinez-Villafane, J. G.. Gonzalez-Rodriguez, "Effect of heat treatment on the stress corrosion cracking of alloy 690," Mater. Sci. Eng.,A Vol.332, 2002, pp. 223–230.
    20. H. Sahlaoui, H. Sidhom and J. Philibert, "Prediction of chromium depleted-zone evolution during aging of Ni-Cr-Fe alloys," Acta Mater., Vol.50, 2002, pp. 1383–1392.
    21. W. T. Tsai, C. L. Yu, and J. I. Lee, "Effect of heat treatment on the sensitization of Alloy 182 weld," Scr. Mater, Vol.53, 2005, pp. 505–509.
    22. Y. F. Yin and R. G. Faulkner, " Model predictions of grain boundary chromium depletion in Inconel 690," Corros. Sci. , Vol.49 2007, pp. 2177–2197.
    23. Y. Y. Chen, L. B. Chou, L. H. Wang, J. C. Oung and H. C. Shih, "Electrochemical polarization and stress corrosion cracking of alloy 690 in 5-M chloride solutions at 25°C," Corrosion, Vol.61, 2005, pp. 1 - 9.
    24. D. Radaj, "Heat effects of welding: temperature field, residual stress, distortion," 1992, New York, Springer-Verlag.
    25. C. M. Adams Jr., "Heat Flow in Welding." Fundamentals of Welding, vol. 1, Welding Handbook , seventh ed, ed. C. Weisman, 1976, American Welding Society. 90–97.
    26. S. Kou, "Welding Metallurgy," 1987, New York, Wiley.
    27. J. C. Danko, "Stress-Corrosion Cracking of Weldments in Boiling Water Reactor Service." Stress-Corrosion Cracking, ed. R.H. Jones, 1992, Ohio, ASM International.
    28. J. W. Simmons, D. G. Atteridge and S. M. Bruemmer, "Continuous cooling sensitization of type 316 austenitic stainless steel," Corrosion, Vol.48 (12), 1992, pp. 976-982.
    29. H. D. Solomon, "Influence of prior deformation and composition on continuous cooling sensitization of AISI 304 stainless steel," Corrosion, Vol.41, 1985, pp. 512-517.
    30. T. Nagashima, A. Yokoyama, T. Akaba, Y. Nagura, O. Matsumoto and T. Ishide, "Development of YAG laser welding robot system for repairing heat exchanger tubes," Weld. world, Vol.34, 1994, pp. 133–138.
    31. J. D. Kim, C. J. Kim and C. M. Chung, "Repair welding of etched tubular component of nuclear power plant by Nd:YAG laser," J. Mater. Process. Technol. , Vol.114, 2001, pp. 51–56.
    32. T. Y. Kuo and S. L. Jeng, "Porosity reduction in Nd–YAG laser welding of stainless steel and inconel alloy by using a pulsed wave," J. Phys. D: Appl. Phys, Vol.38, 2005, pp. 722–728.
    33. W. M. Steen, "Laser Material Processing," 1991, New York, Springer-Verlag.
    34. A. Yokoyama, T. Nagashima, O. Matsumto, Y. Nagura and T. Ishide. The 5th International Symposium of the Japan Welding Society, 1990, Tokyo. 29–34.
    35. G.. Bao, S. Iguro, M. Inkyo, K. Shinozaki, Y. Mahara and H. Watanabe, "Repair of stress corrosion cracking in overlaying of Inconel 182 by laser surface melting," Weld. world, Vol.49, 2005, pp. 37–44.
    36. G.. Bao, K. Shinozaki, S. Iguro, M. Inkyo, M. Yamamoto, Y. Mahara and H. Watanabe, "Stress corrosion cracking sealing in overlaying of Inconel 182 by laser surface melting," J. Mater. Process. Technol. , Vol.173, 2006, pp. 330–336.
    37. H. Kokawa, M. Shimada and Y.S. Sato, "Grain-boundary structure and precipitation in sensitized austenitic stainless steel," JOM Journal of the Minerals, Metals and Materials Society, Vol.52, 2000, pp. 34–37.
    38. H. Y. Bi, H. Kokawa, Z. J. Wang, M. Shimada and Y. S. Sato, "Suppression of chromium depletion by grain boundary structural change during twin-induced grain boundary engineering of 304 stainless steel" Scripta Mater. , Vol.49, 2003, pp. 219–223.
    39. R. Stickler and A. Vinckier, "Morphology of grain-boundary carbides and its influence on intergranular corrosion of 304 stainless steel," Trans. ASM Vol.54, 1961, pp. 362-380.
    40. S. M. Bruemmer, "Compositional-based correlations to predict sensitization resistance of austenitic stainless steels," Corrosion, Vol.42, 1986, pp. 27-35.
    41. K. Kokawa and T. Kuwana, "Relationship between grain boundary Structure and Intergranular corrosion in heat-affected zone of type 304 stainless steel weldments," Transactions of the Japan Welding Society, Vol.23 (2), 1992, pp. 73-81.
    42. N. Parvathavarthini and R. K. Dayal, "Time-temperature-sensitization diagrams and critical cooling rates of different nitrogen containing austenitic stainless steels," Journal of Nuclear Materials, Vol.399 (1), 2010, pp. 62-67.
    43. R. K. Dayal and J. B. Gnanamoorthy, "Predicting Extent of sensitisation during continuous cooling from TTS diagram," Corrosion Vol.36, 1980, pp. 104-105.
    44. H. D. Solomon, "Influence of composition on continuous cooling sensitization of type 304 stainless steel," Corrosion NACE, Vol.40 (2), 1984, pp. 51-60.
    45. A. Edward Loria, "The end quench as a screening tool for continuous cooling sensitization of type 304 stainless steel," Materials Science and Engineering, Vol.76, 1985, pp. 159-172.
    46. S. Pednekar and S. Smialowska, "The effect of prior cold work on the degree of sensitization in type 304 stainless steel," Corrosion, Vol.36, 1980, pp. 565–577.
    47. C. L. Briant, R. A. Mulford and E.L. Hall, "Sensitization of austenitic stainless steels, I. Controlled purity alloys," Corrosion Vol.38, 1982, pp. 468–477.
    48. R. Beltran, J. G. Maldonado, L. E. Murr and W. W. Fisher, "Effects of train and grain size on carbide precipitation and corrosion sensitization behavior in 304 stainless steel," Acta Mater., Vol.45 1997, pp. 4351-4360.
    49. C. García, F. Martín, P.D. Tiedra, J.A. Heredero, and M.L. Aparicio, "Effects of prior cold work and sensitization heat treatment on chloride stress corrosion cracking in type 304 stainless steels," Corrosion Science, Vol.43 (8), 2001, pp. 1519-1539.
    50. N. Parvathavarthini and R. K. Dayal, "Influence of chemical composition, prior deformation and prolonged thermal aging on the sensitization characteristics of austenitic stainless steels," Journal of Nuclear Materials, Vol.305 (2-3), 2002, pp. 209-219.
    51. R. Singh, "Influence of cold rolling on sensitization and intergranular stress corrosion cracking of AISI 304 aged at 500 °C," Journal of Materials Processing Technology, Vol.206 (1-3), 2008, pp. 286-293.
    52. ASTM, Standard Designation A262-Practice A-F, Reapproved 2008. pp. 1–16.
    53. D. Rosenthal, "The theory of moving sources of heat and it's application to metal treatments," Trans ASME Vol.68,, 1946., pp. 849–866.
    54. V. Pavelic, R. Tanbakuchi, O. Uyehara and P. S. Myers, "Experimental and computed temperature histories in gas tungsten arc welding of thin plates," Welding J., Vol.48 (7), 1969, pp. 295s–305s.
    55. E. Friedman, " Thermo-mechanical analysis of the welding process using the finite element method", Journal Pressure Vessel Technology Trans. ASME, Vol.97, 1975 pp. 206-213.
    56. G.. W. Krutz and L. J. Segerlind, "Finite Element Analysis of Welded Structures," Welding Journal, Vol.57 (No.7), 1978, pp. 211s-216s.
    57. J. Goldak, A. Chakravarti and M. Bibby, "A new finite element model for welding heat sources," Metallurgical and Materials Transactions B, Vol.15 (2), 1984, pp. 299-305.
    58. F. Lu, S. Yao, S. Lou and Y. Li, "Modeling and finite element analysis on GTAW arc and weld pool," Computational Materials Science, Vol.29 (3), 2004, pp. 371-378.
    59. X. Y. Shan, M. J. Tan and N. P. O'Dowd, "Developing a realistic FE analysis method for the welding of a NET single-bead-on-plate test specimen," Journal of Materials Processing Technology, Vol.192-193, 2007, pp. 497-503.
    60. M. R. Frewin and D. A. Scott, "Finite Element Model of Pulsed Laser Welding," Welding Research Supplement, 1999, pp. 15s-22s.
    61. H. C. Kuo and L. J. Wu, "Prediction of heat-affected zone using Grey theory," Journal of Materials Processing Technology, Vol.120 (1-3), 2002, pp. 151-168.
    62. J. Wilson and J. F. B. Hawkes, Lasers Principles and Applications, , Prentice Hall, 1987.
    63. T. Zacharia, S. A. David, J. M. Vitek and T. Debroy, "Weld Pool Development during GTA and Laser Beam Weldingof Type 304 Stainless Steel, Part I-Theoretical Analysis," Weld. J., Vol.68, 1989, pp. 499s-509s.
    64. T. Zacharia, S. A. David, J. M. Vitek, and T. Debroy, "Heat transfer during Nd-Yag pulsed Laser welding and its effect on solidification structure of austenitic stainless steels," Materials and Materials Transactions A, Vol. 20, 1989, No. 5, pp. 957- 967.
    65. O. O. D. Neto and C. A. S. Lima, "Nonlinear three-dimensional temperature profiles in pulsed laser heated solids," Journal of Physics D: Applied Physics, Vol.27 (9), 1994, pp. 1795.
    66. N. Sonti and M. F. Amateau, "Finite-element modeling of heat flow in deep-penetration laser welds in aluminum alloys" Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, Vol.16 (3), 1989, pp. 351 - 370.
    67. R. Mueller. in Proceedings of the ICALEO 94, 1994, pp. 509.
    68. P. Solana and J. L. Ocaña, "A mathematical model for penetration laser welding as a free-boundary problem," Journal of Physics D: Applied Physics, Vol.30 (9), 1997, pp. 1300.
    69. W. Sudniky, D. Radajz and W. Erofeewy, " Computerized simulation of laser beam welding, modeling and verification," J. Phys. D: Appl. Phys, Vol.29, 1996, pp. 2811–2817.
    70. V. Semak and A. Matsunawa, "The role of recoil pressure in energy balance during laser materials processing," Journal of Physics D: Applied Physics, Vol.30 (18), 1997, pp. 2541.
    71. R. Rai, G.. G. Roy and T. DebRoy, "A computationally efficient model of convective heat transfer and solidification characteristics during keyhole mode laser welding," Journal of applied physics, Vol.101, 2007.
    72. J. Zhou and H. L. Tsai, "Porosity Formation and Prevention in Pulsed Laser Welding," Journal of Heat Transfer, Vol.129 (8), 2007, pp. 1014-1024.
    73. A.P. Mackwood and R. C. Crafer, "Thermal modelling of laser welding and related processes: a literature review," Optics & Laser Technology, Vol.37 (2), 2005, pp. 99-115.
    74. G.. H. Little and A. G. Kamtekar, "The effect of thermal properties and weld efficiency on transient temperatures during welding," Computers & Structures, Vol.68 (1-3), 1998, pp. 157-165.
    75. X. K. Zhu and Y. J. Chao, "Effects of temperature-dependent material properties on welding simulation," Computers & Structures, Vol.80 (11), 2002, pp. 967-976.
    76. H. T. Lee and J. L. Wu, "Intergranular corrosion resistance of nickel-based alloy 690 weldments," Corrosion Science, Vol.52 (5), 2010, pp. 1545-1550.
    77. H. T. Lee and J. L. Wu, "The effects of peak temperature and cooling rate on the susceptibility to intergranular corrosion of alloy 690 by laser beam and gas tungsten arc welding," Corrosion Science, Vol.51 (3), 2009, pp. 439-445.
    78. H. T. Lee and J. L. Wu, "Correlation between corrosion resistance properties and thermal cycles experienced by gas tungsten arc welding and laser beam welding Alloy 690 butt weldments," Corrosion Science, Vol.51 (4), 2009, pp. 733-743.
    79. H. T. Lee and T. Y. Kuo, "Analysis of Microstructure and Mechanical Properties for Alloy 690 Weldments Using Filler Metals I-82 and I-52," Science and Technology of Welding & Joining, Vol.4 (2), 1999, pp. 94-103.
    80. H. T. Lee and T. Y. Kuo, "Effects of Niobium on the Microstructure, Mechanical Properties and Corrosion Behavior in Weldments of Alloy 690," Science and Technology of Welding & Joining, Vol.4 (4), 1999, pp. 246-256.
    81. A. Conde, I. GarcIa and J. J. de Damborenea, "Pitting corrosion of 304 stainless steel after laser surface melting in argon and nitrogen atmospheres," Corrosion Science, Vol.43 (5), 2001, pp. 817-828.
    82. S. Yang, Z. Wang, H. Kokawa and Y. S. Sato, "Reassessment of the effects of laser surface melting on IGC of SUS 304," Materials Science and Engineering: A, Vol.474 (1-2), 2008, pp. 112-119.
    83. ttp://www.toshiba.co.jp/nuclearenergy/english/maintenance/ldt/ldt01.htm.
    84. J. L. Wu, "Welding characteristics and stress corrosion cracking behavior of nickel-based alloys 690 by laser beam and arc welding processes", Department of Mechanical Engineering, National Cheng Kung Univerisity, 2010.
    85. R. Dieter, Heat Effects of Welding, Springer-Verlag, 1992.
    86. http://www.fortunecity.com/village/lind/247/weld-book/fig10-32.gif.
    87. 王振欽, "銲接學, 2nd ed," 高力圖書, 2003.
    88. http://laser_02-miyachi.com.
    89. W. M. Steen, Laser Material Processing, London, Springer-Verlag, 1991.
    90. T. Fuhrich, P. Berger and H. Hugel, "Marangoni Effect in Laser Deep Penetration Welding of Steel," Journal of Laser Applications, Vol.13 (5), 2001, pp. 178-186.
    91. 郭聰源, 劉政益, and 吳佳霖, "輸出功率形式與保護氣體對鎳基690合金雷射銲接特性之影響研究," 銲接與切割, 2004, pp. 55-61.
    92. 曾秉鈞, "雷射表面重熔參數對SUS 304敏化不銹鋼去敏化之影響", 國立成功大學機械工程研究所. 2009.
    93. V. Kain, K. Chandra, K. N. Adhe and P.K. De, "Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels," Journal of Nuclear Materials, Vol.334 (2-3), 2004, pp. 115-132.
    94. C. Schmidt, R. Caligiuri, L. Eiselstein, S. Wing and D. Cubicciotti, "Low temperature sensitization of type 304 stainless steel pipe weld heat affected zone," Metallurgical and Materials Transactions A, Vol.18 (8), 1987, pp. 1483-1493.

    無法下載圖示 校內:2013-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE