| 研究生: |
徐立銘 Shiu, Li-Ming |
|---|---|
| 論文名稱: |
陰陽離子液胞包覆行為之探討 The Stability and Encapsulation Behavior of Catanionic Vesicles |
| 指導教授: |
楊毓民
Yang, Yu-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 對稱性 、半乳糖甘酉每 、包覆 、膽固醇 、陰陽離子液胞 、螢光劑 |
| 外文關鍵詞: | beta-galactosidase, encapsulation, symmetry, catanionic vesicles, CF, cholesterol |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以四種陰陽離子界劑DP-DS(12C-12C)、CP-DS(16C-12C)、DTMA-DS(12C-12C)、HTMA-DS(16C-12C)取代傳統脂質,利用「強制性」方式來製備液胞,以探討陰陽離子液胞的穩定性和膽固醇的添加效應。文中利用螢光劑CF和蛋白質酵素beta-galactosidase兩種包覆物,觀察四種陰陽離子界劑在添加膽固醇之後的包覆特性,並針對作為傳輸載體的可能性做一番探討。在液胞穩定性的探討上,以雷射光散射法粒徑測定儀,測定液胞的粒徑分佈及其隨時間的變化。而在液胞的包覆行為方面,是利用螢光光譜儀,對被包覆之螢光試劑(CF)及蛋白質酵素(beta-galactosidase),進行包覆量及洩漏的觀測。
對於陰陽離子界劑所製備液胞的穩定性實驗結果發現,液胞的穩定性主要由碳氫鏈中碳數所主導。對稱性越好的系統,其構成的液胞越穩定,而親水頭基對液胞的穩定效應並不明顯。而由膽固醇添加的實驗結果可知,膽固醇對陰陽離子液胞的穩定性有顯著的增強效應,且碳鏈對稱性越好的系統中,所需膽固醇的量越少。在液胞的包覆實驗上發現,此四系統對螢光劑和蛋白質酵素的包覆效率最高可達21.6%和10.2%。而包覆效率的大小主要與陰陽離子界劑的頭基有關,與碳鏈長短及對稱性無明顯之關係。然而包覆物的洩漏率則受碳鏈所控制,碳鏈對稱性越佳,液胞穩定性越好的系統,其洩漏率越低。
Four kinds of catanionic surfactants including DP-DS, CP-DS, DTMA-DS, HTMA-DS were used to prepare vesicles by method of reverse-phase evaporation. The effects of head group and chain length of the catanionic surfactants, as well as the effects of cholesterol incorporation, on the stability of vesicles were studied. These vesicles were than used to encapsulate carboxyfluorescein(CF)and beta-galactosidase to evaluate the possibility of these vesicles to be used as carriers. The size distribution of vesicles were measured by laser light scattering and the entrapment and release of CF and beta-galactosidase were determined by a fluorescence spectrophotometer.
The results show that the stability of vesicles is strongly related to the symmetry and length of hydrocarbon chains. The more symmetrical system(12C-12C)exhibits a more stability of the vesicles. When cholesterol is incorporated, the vesicles become stable and the stability increases with the increasing amount of cholesterol. From the experimental results of entrapment, it was found that the entrapment efficiency is mainly affected by the head groups of catanionic surfactants. The maximum values of entrapment efficiency for CF and beta-galactosidase in the four systems are about 21.6% and 10.2% respectively. The leakage rate of the entrapped material has intimated relationship with stability of vesicles. The more symmetrical and stable the vesicles are, the smaller the leakage rate is obtained.
Alkalaf, W., Elsoda, M., Girpon, J. C., and Vassal, L., Acceleration of cheese ripening with liposome-entrapped proteinase: Influence of liposome net charge, J. Dairy Sci., Vol. 72, p. 2233, 1989.
Annesini, M. C., The molecular design of enzyme-loaded liposomes, Chemical and biochemical engineering quarterly, Vol. 12, p. 1, 1998.
Annesini, M. C., Memoli, A., and Petralito, S., Surfactant-induced leakage from liposomes: a comparison among different lecithin vesicles, International journal of pharmaceutics, Vol. 184, p. 227, 1999.
Annesini, M. C., Memoli, A., and Petralito, S., Kinetics of surfactant-induced release from liposomes: a time-dependent permeability model, Journal of membrane science, Vol. 180, p. 121, 2000.
Bhattacharya, S., Soma De, and Subramanian, M., Synthesis and vesicle formation from hybrid bolaphile/ amphiphile ion-pairs. Evidence of membrane property modulation by molecular design, Department of Organic Chemistry, Indian Institute of Science, Bangalore India, Vol. 560, p. 12, 1998.
Blumenthal, R., Weinstein, J. N., Sharrow, S. O., and Henkart, P., Liposome-lymphocyte interaction: saturable sites for transfer and intracellular release of liposome contents, Proc. Natl. Acad. Sci. U.S.A., Vol. 74, p. 5603, 1977.
Blumenthal, R., Weinstein, J. N., Sharrow, S. O., and Henkart, P., Antibody-mediated targeting of liposomes: binding to lymphocytes does not ensure incorporation of vesicle contents into the cells, Biochim. Biophys., Vol. 509, p. 272, 1978.
Caillet, C., Hebrant, M., and Tondre, C., Sodium octyl sulfate/ cetyltrimethylammonium bromide catanionic vesicles: Aggregate composition and probe encapsulation, Langmuir, Vol. 16, p. 9099, 2000.
Chawan, C. B., Penmetsa, PP. K., Veeramachaneni, R., and Rao, D. R., Liposomal encapsulation of beta-galactosidase: Effect of buffer molarity, lipid composition and stability in milk, J. Food Biochem., Vol. 16, p. 349, 1993.
Chien, C. L., Yang, Y. M., Chang, C. H., and Maa, J. R., A study on cetyl pyridinium dodecyl sulfate and dodecyl trimethylammonium dodecyl sulfate catanionic surfactants, J. Colloid Interface Sci., submitted, 2002.
Chung, Y. -C., Fukuda, H., Regen, S. L., and Hirano, K., Comparison of barrier properties of bilayers derived from an ion-paired amphiphile with those of a phosphatidylcholine analog, Langmuir, Vol. 8, p. 2843, 1992.
Fischer, A., Hebrant, M., and Tondre, C., Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/ release processes in the sodium dodecyl benzene sulfonate/ cetyltrimethylammonium tosylate/ water system, Journal of Colloid and Interface Science, Vol. 248, p. 1, 2002.
Fukuda, H., Kawata, K., Okuda, H., Regen, S. L., Bilayer-Forming Ionic-Pair Amphiphiles from single-chain surfactants, J. Am. Chem. Soc., Vol. 112, p. 1635, 1990.
Gier, J., Mandersloot, J. G., and Van Deenen, L. L., The role of cholesterol in the lipid membranes, Biochim. Biophys., Vol. 173, p. 143, 1969.
Inoue, K., Permeability properties of liposomes prepared from dipalmitoyllecithin, dimyristoyllecithin, egg lecithin, rat liver lecithin and beef brain sphingomyein, Biochim. Biophys., Vol. 339, p. 390, 1974.
Kaler, E. W., Murthy, A. K., and Rodriguez, B. E., Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants, J. A. N. Zasadrinski, Sci., Vol. 245, p. 1371, 1989.
Kalusner, R. D., Kumor, N., Weinstein, J. N., Blumenthal, R., and Flavin, M. I., Interaction of tubulin with phospholipids vesicles. Association with vesicles at the phase transition, J. Biol. Chem., Vol. 256, p. 5879, 1981.
Kim, C. K. and Jeong, E. J., Enhanced lymph node delivery and immunogenicity of hepatitis B surface antigen entrapped in galactosylated liposomes, International journal of pharmaceutics, Vol. 147, p. 143, 1997.
Kim, C. K., Chung, H. S., Lee, M. K., Choi, L. N., and Kim, M. H., Development of dried liposomes containing beta-galactosidase for the digestion of lactose in milk, International journal of pharmaceutics, Vol. 183, p. 185, 1999.
Kirby, C. J., Brooker, B. E., and Law, B. A., Acceleration ripening of cheese using liposome-encapsulated enzyme, Int. J. Food Sci. Technol, Vol. 22, p. 353, 1987.
Kondo, Y., Uchiyama, H., Yoshino, N., Nishiyama, K., and Abe, M., Spontaneous vesicles formation from aqueous solution of didodecyldimethylammonium bromide and sodium dodecyl sulfate mixtures, Langmuir, Vol. 1, p. 2380, 1995.
Lasch, J., Interaction of detergents with lipid vesicles, Biochim. Biophys., Vol. 1241, p. 269, 1995.
Lassic, D. D., In Liposome: from physics to applications, Elsevier Press, New York, Vol. 1, 1993.
McKelvey, C. A., Kaler, E. W., Zasadzinski, J. A., Coldren, B., and Jung, H.T., Templating hollow polymeric spheres from catanionic equilibrium vesicles: synthesis and characterization, Langmuir, Vol. 16, No. 22, p. 8285, 2000.
Menger, F. M., Binder, W. H., Keiper, J. S., Cationic surfactants with counterions of glucuronate glycosides, Langmuir, Vol. 13, p. 3247, 1997.
Papahadjopoulos, D., Moscatello, M., Eylar, E. H., Isac, T., Effects of proteins on thermotropic phase transition of phospholipid membranes, Biochim. Biophys., Vol. 401, p. 317, 1975.
Ralston, E., Hjelmeland, L. M., Kalusner, R. D., Weinstein, J. N., and Blumenthal, R., Carboxyfluorescein as a probe for liposome-cell interaction: effects of impurities, and purification of the dye, Biochim. Biophys., Vol. 649, p. 133, 1981.
Rao, D. R., Chawan, C. B., and Veeramachaneni, R., Liposomal encapsulation of beta-galactosidase: Composition of two methods of encapsulation and in vitro lactose digestibility, J. Food Biochem., Vol. 18, p. 239, 1995.
Rao, D. R. and Chawan, C. B., Enzyme technologies for alleviating lactose maldigestion, Food science and technology international, Vol. 3, p. 81, 1998.
Regev, O. and Khan, A., Alkyl chain symmetry effects in mixed cationic-anionic surfactant systems, J. Colloid Interface Sci., Vol. 182, p. 95, 1996.
Santanu, B. and Saubhik, H., Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain–backbone linkage, Biochim. Biophys., Vol. 1467, p. 39, 1999.
Tondre, C. and Caillet, C., Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis, Advances in colloid and interface science, Vol. 93, p. 115, 2001.
Weinstein, J. N., YoshiKami, S., Henkart, PP., and Hagins, W. A., Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker, Science, Vol. 195, p. 489, 1977.
Weinstein, J. N., Magins, R. L., Yatvin, M. B., and Zaharko, D. S., Liposomes and local hyperthermia: selective delivery of methotrexate to heated tumors, Science, Vol. 204, p. 188, 1979.
Weinstein, J. N., Kalusner, R. D., Innerarity, T., Ralston, E., and Blumenthal, R.,“Phase transition release,”A new approach to the interaction of proteins with lipid vesicles: applications to liposomes, Biochim. Biophys., Vol. 647, p. 270, 1981.
YoshiKami, S. and Hagins, W. A., Intracellular transmission of visual excitation in photoreceptors: electrical effects of chelating agents introduced into rods by vesicle fusion, in Vertebrate Photoreceptors, Fatt, PP. and Barlow, H. B., Eds., Academic Press, New York, 97, 1978.
Yuet, PP. K. and Blankschtein, D., Molecular-thermodynamic modeling of mixed cationic/anionic vesicles, Langmuir, Vol. 12, p. 3802, 1996.
Yuet, PP. K. and Blankschtein, D., Effect of surfactant tail-length asymmetry on the formation of mixed surfactant vesicles, Langmuir, Vol. 12, p. 3819, 1996.
陳炳宏和馮思慎, 微脂粒在藥物輸送的應用, 化工, 47卷, 第3期, 2000。