| 研究生: |
蔡建維 Tasy, Chain-Wei |
|---|---|
| 論文名稱: |
壓電變壓器之製造與分析及性能研究 Fabrication, Analysis and Performance Study of Piezoelectric Transformers |
| 指導教授: |
呂宗行
Leu, Tzong-Shyng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 液晶顯示 、ANSYS 、壓電變壓器 、磁性變壓器 、壓電陶瓷 |
| 外文關鍵詞: | piezoelectric transformer, magnetic transformer, liquid crystal display, ANSYS., piezoelectric ceramic |
| 相關次數: | 點閱:180 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壓電變壓器與傳統繞線圈的磁性變壓器相比,具有輕薄短小、高效率與無電磁干擾等優點,隨著電器朝小型和輕薄型化發展的驅勢下,壓電變壓器逐漸取代磁性變壓器,尤其是應用在液晶顯示裝置所需的電源供應系統上。
由於壓電變壓器具有上述諸多優點,但其單價仍高於傳統的磁性變壓器,除了應用在高單價的電器產品外,尚未普及至一般產品上。另外,因其製造技術跨入門檻高,國內祇有少數廠商具有製造能力,故培養技術人才與研發先進技術有待產學界共同努力。
本論文主要目的在研發壓電變壓器之製作及設計與模擬技術。首先由力學和電學之理論推導壓電變壓器之等效電路,得知壓電變壓器的輸出端電極長度和輸入端電極厚度尺寸比值及壓電材料特性參數與電壓增益值關係式。並利用ANSYS軟體進行設計與模擬,經有限元素法計算後得到壓電變壓器電壓增益值-頻率響應圖和阻抗-頻率響應圖。再將設計與模擬出的壓電變壓器尺寸30.3 x 6.5 x 1.3 mm進行實作,由壓電陶瓷粉末之壓製、燒結、極化,完成壓電變壓器之製作並量測與分析其性能,其反共振頻率(Fa)=113.5kHz和共振頻率(Fr)=111.3kHz。
將理論推導、ANSYS模擬結果與製作壓電變壓器之性能量測值,三種結果相互比對,ANSYS模擬結果共振頻率(Fr) 111.0kHz和反共振頻率(Fa) 109.5kHz,與實際自己製作的壓電變壓器結果相比,誤差約為1.6%,尚在合理範圍,得知ANSYS模擬結果的可信度,以方便日後以軟體來設計新型變壓器。
Compared with wire-wound magnetic transformer, piezoelectric transformer ( PT ) has main advantages which include small and thin size, high efficiency power, no electromagnetic radiation, and so on. PT is gradually replacing magnetic transformer, especially in the application of the power supply of the liquid crystal displays ( LCDs ), because the tendency of electrical appliances is toward small and thin units.
Although piezoelectric transformer offers the advantages above, it is only used in high-price electronic appliances because of higher cost in PT than that in magnetic transformer. In addition, for higher thresholds of technologies needed, a few companies capably invest in PT fabrication in Taiwan. In this theme, the researches on the fabrication, design, and simulation are carried out. First, the electrical equivalent circuit of PT is derived based on mechanical and electrical theories to learn the PT voltage gain in terms of the ratio of poling lengths of output section to input section, and characteristic parameters of piezoelectric material. Then, with the ANSYS, the design and simulation of PT are done. The voltage gain versus frequency response and impedance versus frequency response can be obtained by finite element calculation. Third, the implementation of the PT with the dimension of 30.3 x 6.5 x 1.3 mm is completed by stages from mold patterning of piezoelectric ceramic dust, burning process to poling process. The performances of implemented PT are measured with instruments. The resonance and anti-resonance frequencies are 113.5 kHz and 111.3 kHz respectively.
Finally, the data comparisons of the parameters data from theory calculation, ANSYS simulation and instrument measurement are performaned. The difference of resonance and anti-resonance frequencies between simulation and measured data are 2.5kHz and 1.8kHz that difference rates are less than 1.6%. This demonstrates that the ANSYS simulation data are available to be used as pre-design references. It is greatly convenient for new PT designs and analyses in the future.
參考文獻
[1] 吳朗, “壓電陶瓷~壓電,” 全欣資訊圖書,1995
[2] Born M and Huang K , “Dynamical Theory of Crystal Lattices”, 1954
[3] Takuro Ikeda , “ Fundamentals of Piezoelectricity”, Department of Applied Physics Faculty of Engineering Tohoku University Sendai, Japan,1990
[4] W. P. Mason, “Piezoelectric Crystals and Their Application to Ultrasonics”, Van Nostrand, N. Y.,1950
[5] C. A. Rosen, US Patent No. 2,974,296, March 1961.
[6] C. A. Rosen, “Analysis and Design of Ceramic Transformer and Filter Elements”, Ph.D. Dissertation, Electrical Engineering Dept., Syracuse University, Aug. 1956.
[7] C. A. Rosen, “Ceramic Transformers and Filters”,. Proceedings of Electronic Comp. Symp. , pp. 205-211, 1956.
[8] Kenji Uchino, “ High Power Piezoelectric Transformers - Their Applications to Smart Actuator Systems,” International Center for Actuators and Transducers The Pennsylvania State University, 2004
[9] O. Ohnishi, H. Kishie, A. Iwamoto,T. Zaitsu, and T. Inoue, “Piezoelectric ceramic transformer operating in thickness extentional mode for power supply,” Ultrasonics Symposium, pp. 483-488, 1992.
[10] S. Kawashima, “Third Order Longitudinal Mode Piezoelectric Ceramic Transformer and Its Application to High-Voltage Power Inverter,” NEC Corporation, Kawasaki 211 + Yamagata University, Yonezawa 992, Japan,1994
[11] Kanayama and Kouichi, “Properties of Alternately Poled Piezo- electric Transformers,” Jpn.J.Appl.Phys., Vol.36, pt.1, No.5B,1997
[12] D. A. Berlincourt: U.S. Patent 3764848 (1973).
[13] Shashank PRIYA, “ Multilayered Unipoled Piezoelectric Transformers,” International Center for Actuators and Transducers, Pennsylvania State University, University Park, PA 16802, USA, 2004
[14] Shashank Priya, “Unipoled Piezoelectric Transformers for Automobile Lighting,” American Piezo Ceramics International, Pleasant Gap, PA 16823, 2004
[15] Alfredo Vázquez Carazo , “50 Years of Piezoelectric Transformers. Trends In The Technology,” Department of R&D Engineering, Face Electronics, Virginia, U.S.A , 2003 Fall Meeting Technical Program
[16] Reinhard Lerch, “Simulation of Piezoelectric Devices by Two- and Three-Dimensional Finite Elements”,1990
[17] Hyun-Woo Joo, Chang-Hwan Lee, Jong-Seok Rho, and Hyun-Kyo Jung “Identification of Material Const ants for Piezoelectric Transformers by Three -Dimensional, Finite-Element Method and a Design-Sensitivity Method,”,2003
[18] Joel F. Rosenbaum, “Bulk Acoustic Wave Theory and Devices,” Artech House, 1988
[19] Don A. Berlincourt, Daniel R. Curran,and Hans Jaffe , “Physical Acoustics,” Chapter3, Volume I-PartA,p.188-p.248,1964
[20] 謝仁豪, “壓電厚膜微致動器之製作” 大葉大學機械工程學系碩士論文,p.16- p.17,2002
[21] Mason,W.P, “ Electromechanical Transducers and Wave Filters,” 2nd ed,p201-p209,p.399-p.404, Van Nostrand, Princeton,New Jersey, 1948
[22] 蕭文欣,“創新壓電變壓器/換能氣之理論與實驗:擬模態致動器及波動原理設計之理念之應用”國立台灣大學 應用力學研究所,p.53-p.83,2000
[23] Erwin Kreyszig , “Advanced Engineering Matnematics” John Wiley & Sons , Inc , 1990
[24] ANSYS 8.0, “Piezoelectrics,” ANSYS Help, Theory Reference , Chapter 11.Coupling
[25] Tzou H S, Tseng C I., “Distributed piezoelectric sensor/actuator design for dynamic measurement/control of distributed parameter systems: a piezoelectric finite element approach,”. J of Sound and Vibration , 138(1): 17~34, 1990
[26] Y.Jin,C.F.Foo,W.G.Zhu, “Three- Dimensional Simulation Of Piezoelectric Transformer For The Switching Power Supply,” School of Electrical and Electronic Engineering , Nanyang Technological University, Nanyang Avenue, Singapore 639798,1999
[27] 李誌隆,“壓電變壓器等效電路與三維振動分析”國立台灣大學造船及海洋工程研究所碩士論文, 2001
[28] 洪敏雄,“奈米材料分析”昌海書局
[29] 成大圖書館中的資料檢索區的粉末繞射資料庫
[30] 國立成功大學貴重儀器使用中心儀器介紹 http://www.ncku.edu.tw/~facility/facility/