簡易檢索 / 詳目顯示

研究生: 潘美然
Mishra, Deepam
論文名稱: 不同超穎材料構形之電磁波吸收特性之數值研究
A Numerical Study on Electromagnetic Wave Absorption Characteristics with Different Patterns of Metamaterial
指導教授: 鄭金祥
Cheng, Chin-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 131
中文關鍵詞: 超穎材料電磁波S參數構形設計隱形科技.
外文關鍵詞: Metamaterial, Electromagnetic waves, S- Parameter, Pattern design, Stealth technology.
相關次數: 點閱:86下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係發展一新穎構形之超穎材料(Metamaterial, MMT),其在特定頻率下具有高電磁(Electromagnetic, EM)波吸收率;該材料可被應用在隱形科技以減少雷達截面積且可用於飛機及船舶的電磁波吸收器。本研究將討論在雷達的C及X頻段下,不同構形的超穎材料之吸收率。
    首先,針對既有矩形超穎材料之構形進行修改及實測,以驗證數值模組之正確性。該材料成份為將銀(Ag)圖案披覆於聚酰亞胺(PI)的介電層上,其中介電層將被改為玻璃材料。本研究利用商業軟體COMSOL針對不同構形之超穎材料進行數值模擬;將探討正常入射電磁波之吸收率、工作頻率及S參數(S-parameters, S11及S21)等特性;其中,S11及S21分別反射係數及傳輸係數。此外,透過電子束蒸發器進行實驗,藉以驗證模擬之準確性;本研究發現其模擬與實驗結果相當吻合。
    在數值模組驗證無誤之後,本研究另外針對其他數種不同的構形進行分析。對於特定頻率範圍之超穎材料的構形、幾何形狀、材料種類及各材料方向配置等特性進行設計,並探討其模擬結果。其中,可透過S參數(S-parameters, S11及S21)研究分析超穎材料性能;同時,藉由電磁場分佈情況以了解前述結構設計之吸收原理。透過研究可得到一種新的超穎材料構形,該結構在C和X頻率範圍時具有高吸收率及較大的頻帶寬度。

    The main aim of this thesis is to develop a new metamaterial (MMT) design pattern with high electromagnetic (EM) wave absorption characteristics in radar frequency range, which can be applied in stealth technology for airplanes and ships. The frequency band of interest is C and X band of radar. Firstly, some modifications are done to the already existing rectangular metamaterial design pattern. The unit cell of existing design consists of silver (Ag) patterns coated on a dielectric layer of polyimide (PI). A dielectric layer is modified to be the glass. A numerical simulation of this design is performed by using the commercial software package of COMSOL. The absorptivity, operation frequency and S-parameters are investigated under the normal incidence of EM waves. In order to verify the feasibility of numerical module, experiments have been performed by using the E-beam coating machines. It is found that the experimental results agree closely with simulation results.
    Secondly, a various MMT patterns are further designed with different geometry, shape and orientation at the desired frequency range and the results are carried out by numerical simulation. The S-parameters S11 (reflection coefficient) and S21 (transmission coefficient), are used to investigate MMT performance. The electromagnetic field distribution properties have been investigated in order to understand the absorption mechanism of the designed structure. A parametric study is performed for the selected design patterns in order to achieve high absorptivity and larger bandwidth. Eventually, a new metamaterial design pattern is selected with high absorptivity for C and X band of frequency regime.

    CONTENTS ABSTRACT………………………………………………………….......I 摘要………………………………………………………………………….III ACKNOWLEDGMENT……………………………………………………V CONTENTS………………………………………………………………...VI LIST OF TABLES……………………………………………………………X LIST OF FIGURES………………………………………...………………XI NOMENCLATURE……………………………………………….……XVII CHAPTER 1 INTRODUCTION…………………………………………….1 1.1 Background…………………………………………………………...1 1.2 Motivation……………………………………………………………5 1.3 Scope of This Thesis.…………………………………………………6 CHAPTER 2 THEORY OF METAMATERIAL...…………………………….8 2.1 Electromagnetic Wave Theory ………………………………………8 2.1.1 Maxwell’s Equation………………………………………………8 2.1.2 Boundary and Interface Condition……………………………10 2.1.3 Boundary Condition at Interface between a Dielectric and a Perfect Conductor………………………………………………………………11 2.2 Transverse Electromagnetic (TEM)….……………………….…12 2.2.1 Transverse Electric (TE) Mode……………………………………12 2.2.2 Transverse Magnetic (TM) Mode……………………………….12 2.3 Negative Refractive Index…………………………………………13 2.4 Metamaterial Classification and Properties…………………………14 2.5 Drude Model…………………………………………………….15 2.5.1 Drude Model for Metals………………………………………16 2.5.2 Dielectric Constant Formulation……………………………….16 CHAPTER 3 NUMERICAL SIMULATION……………….……....……….18 3.1 Numerical Simulation for Rectangular Pattern (RP)………………18 3.1.1 Unit Cell Design of RP.……………………………………………18 3.1.2 Numerical Modeling………………………………………………19 3.1.3 Boundary Conditions……………………………………………19 3.1.4 Solver……………………………………………………………21 3.1.5 S-Parameter Calculation……………………………………….21 3.1.6 Absorptivity Calculation……………………………………….22 3.2 Numerical Simulation for Double Rectangular Pattern (DRP)……………………………………………………….…………23 3.2.1 Unit Cell Design of DRP…………………………………………23 3.2.2 Numerical Modelling………………………………………….24 3.2.3 S-Parameter and Absorptivity Calculation………………………24 3.3 Numerical Simulation for Circular Pattern (CP)……………...25 3.3.1 Unit Cell Design of CP…………………………………………….25 3.3.2 Numerical Modeling………………………………………………25 3.3.3 S-Parameter and Absorptivity Calculation……………………….26 3.4 Numerical Simulation for Double Circular Pattern (DCP)………….26 3.4.1 Unit Cell Design of DCP………………………………………….26 3.4.2 Numerical Modeling………………………………………………27 3.5 Numerical Simulation for Cross Circular Pattern (CCP)…………….27 3.5.1 Unit Cell Design of CCP ………………………………………….27 3.5.2 Numerical Modeling………………………………………………27 3.5.3 Mesh Size………………………………………………………….27 3.5.4 S-Parameter and Absorptivity Calculation………………………28 CHAPTER 4 FABRICATION AND EXPERIMENTS……………................29 4.1 Micro Fabrication Technology.…………………………...…………29 4.2 E-Beam Evaporator…………...……………………………….……29 4.3 Fabrication Process….……………….……………………………30 4.4 Vector Network Analyzer……………………………………………32 4.5 Experiment Setup………………………………………………….32 4.6 S-Parameter Measurement for Two Port Network…………………...33 CHAPTER 5 RESULTS AND DISCUSSION………………………………36 5.1 Comparisons between Previous [28] and Present Studies…………36 5.2 Verification of Simulation by Experimental Results............................37 5.3 Analysis of Double Rectangular Pattern (DRP)……………………38 5.4 Analysis of Circular Pattern (CP)………………….……………….39 5.5 Analysis of Double Circular Pattern (DCP)……………….................40 5.6 Analysis of Cross Circular Pattern (CCP)……………………………45 CHAPTER 6 CONCLUSIONS………………………...……………………49 REFERENCES………………………………………………………………52 TABLES AND FIGURES …………………………………………………...58

    REFERENCES
    [1] V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Soviet Physics Uspekhi 10 (1968), pp. 509-514.
    [2] D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, and D.R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314 (2006), pp.977-980.
    [3] M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C.M. Soukoulis, E.N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Physics Review B 75 Issue 23 (2007), pp.1-10.
    [4] M.C.K. Wiltshire, J.B. Pendry, J.V. Hajnal, “Metamaterials and negative refractive index,” Journal of Physics condensed matter 18 (2006), pp.315-321.
    [5] S. Vegesna, M.Saed, “Microstrip dual-bandpass and bandstop filters,” Microwave and Optical technology Letters 54 (2012), pp.168-171.
    [6] F.J. Gonzalez, J. Alda, J. Simon, J. Ginn, G. Boreman, “The effect of metal dispersion on the resonance of antennas at infrared frequencies,” Infrared physics and technology 52 Issue 1 (2009), pp.48-51.
    [7] N.I. Landy, S. Sajuyigbe, J.J. Mock, et al., “A Perfect metamaterial absorber,” Physical review letters 100 Issue 20 (2008), pp.207-214.
    [8] T. Cao, C. Wei, R.E. Simpson, L. Zhang, and M.J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Scientific Reports 4 (2014), pp.39-45.
    [9] J.C. Zhao, Y. Cheng, “A high efficiency and broadband reflective 90-degree linear polarization rotator based on anisotropic metamaterial,” Applied physics B 122 Issue 10 (2016), pp.7-14.
    [10] F.B.P. Niesler, J.K. Gansel, S. Fischbach1, M. Wegener, “Metamaterial metal-based bolometers,” Applied Physics Letters 100 (2012), pp.203-208.
    [11] Y. Liu, Y. Chen, J. Li, T.C. Hung, and J. Li, “Study of energy absorption on solar cell using metamaterials,” Solar Energy 86 (2016), pp.1586-1599.
    [12] K. Ozden, O.M. Yucedag, H. Kocer, “Metamaterial based broadband RF absorber at X- band,” International Journal of Electronics and Communications 70 Issue 8 (2016), pp.1062-1070.
    [13] X.L. Liu, T. Tyler, T. Starr, A.F. Starr, N.M. Jokerst, and W.J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Physics Revision Letter 107 (2011), pp.45-49.
    [14] Y. Cheng, Y. Nie, R. Gong, “A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares film,” Optics and Laser Technology 48 (2013), pp.415-421.
    [15] H. Wang, L. Wang “Perfect selective metamaterial solar absorbers,” Optics Express 21 (2013), pp. A1078-A1093.
    [16] G.D. Wang, M.H. Liu, X.W. Hu, L.H. Kong, L.L. Cheng, “Broadband and ultra-thin terahertz metamaterial absorber based on multi-circular patches,” European Physical Journal B 86 Issue 7 (2013), pp.1-9.
    [17] X. Tian, Z.Y. Li, “Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase change materials,” Photonic Research 4 (2016), pp.146-153.
    [18] S. Shu, Z. Li, Y.Y. Li, “Triple-layer fabry-perot absorber with near perfect absorption in visible and near infrared regimes,” Optics Express 21 (2013), pp.25307-25315.
    [19] Y. Cheng, H. Yang, “Design, simulation and measurement of metamaterial absorber,” Journal of Applied Science 108 Issue 3 (2010), pp.34-39.
    [20] H. Luo, X. Hu, Y. Qiu, P. Zhou, “Design of a wide band nearly perfect absorber based on multi-resonance with square patch,” Solid State Communications 188 (2014), pp.5-11.
    [21] M.H. Li, S.Y. Liu, L.Y. Gua, H.L. Yang, and B.X. Xiao “Influence of the dielectric-spacer thickness on the dual band metamaterial absorber,” Optics Communications 295 (2013), pp.262267.
    [22] S. Ramya, I. S. Rao “Design of new metamaterial absorber with triple band for radar cross section reduction,” Fifth International Conference on Computing and Communication, Kochi, India 2015.
    [23] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R.D. Averitt, and W.J. Padilla, “A metamaterial absorber for the terahertz regimes: Design, fabrication and characterization,” Optics Express 16 Issue 10 (2008), pp.7181-7188.
    [24] M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, CM. Soukoulis, E.N. Economou, “High transmittance left-handed materials involving symmetric split –ring resonators,” Physical Review B 5 (2007), pp.149-155.
    [25] P.V. Tuong, J.W. Park, V.D Lam, W.H. Jang, E.H. Choi, S.A. Nikitov, and Y.P. Lee, “Perfect-absorber metamaterial based on flower-shaped structure,” Journal of Lightwave Technology 30 (2012), pp.34-51.
    [26] J. Valentine, S. Zhang, T. Zentgraf, X. Zhang, “Development of bulk optical negative index fishnet metamaterials: Achieving a low loss and broadband response through coupling,” IEEE 99 Issue 10 (2011), pp.1682-1690.
    [27] A. Erentok, R.W. Ziolkoski, J.A. Nielsen, R.B. Greegor, C.G. Parazzoli, M.H. Tanielian and S.J. Schultz, “Lumped-element based, high subwavelength, negative index metamaterials at UHF frequencies,” Journal of Applied Physics 104 Issue 3 (2008), pp.901-911.
    [28] C.H. Cheng, Y.S. Chen, H.Y. Tsai, D.T.W. Lin, and Y. Chen, “Experimental and numerical study of increasing specific electromagnetic waves absorptivity by using metamaterial structure,” Submitted to Solar Energy, February, 2016.
    [29] L. Basudev, “Split ring resonator based metamaterial,” PhD Dissertation, University of Glasgow, Department of Electronics and Electrical Engineering, 2010.
    [30] J.Y. Rhee, Y.J. Yoo, K.W. Kim, Y.J. Kim, and Y.P. Lee, “Metamaterial-based perfect absorbers,” Journal of Electromagnetic waves and Applications 28 (2014), pp.1541-1580.
    [31] J.W. Park, P. V. Tong, J. Y. Rhee, K. W. Kim, W. H. Won, E. H. Choi, L. Y. Chen and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Optics Express 21 Issue 8 (2013), pp.9691-9702.
    [32] M.A. Mohamed Ali, “Single layer metamaterial absorber for radar application,” PhD Dissertation, University of Gave, Faculty of Engineering and Sustainable Development, 2016.
    [33] L.A. Butler, “Design, simulation, fabrication and characteristics of terahertz metamaterial devices,” PhD Dissertation, The University of Alabama, Department of Electrical and Computer Engineering, 2012.

    無法下載圖示 校內:2022-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE