簡易檢索 / 詳目顯示

研究生: 林怡君
LIN, YI-JYUN
論文名稱: 氧化鈷與硼摻雜還原氧化石墨烯之複合物在氧氣還原與氧氣析出反應之應用
Composite of Cobalt Oxide and B-doped Reduced Graphite Oxide for Oxygen Reduction and Evolution
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 138
中文關鍵詞: 硼摻雜還原氧化石墨烯氧化鈷氧氣還原反應氧氣析出反應雙功能性觸媒
外文關鍵詞: Boron-doped reduced graphite oxide, cobalt oxide, oxygen reduction reaction, oxygen evolution reaciotn, bifunctional catalyst
相關次數: 點閱:137下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   為因應全球環保及低碳生活議題,開發新型可再生或替代能源已是未來產業趨勢,本研究致力於發展低成本、高效能之雙功能性催化觸媒材料,應用於氧氣還原反應 (oxygen reduction reaction, ORR) 和氧氣析出反應 (oxygen evolution reaction, OER)。燃料電池中陰極的氧氣反應為反應速率步驟,目前仍以貴金屬(如Pt, Ru)或其氧化物為主要觸媒,但其價格昂貴且資源有限。本研究使用水熱法,以硼酸 (H3BO3) 將硼摻雜在還原氧化石墨烯的同時,將氧化鈷擔載在此碳材上,成為CoOx/B-rGO複合材料。利用石墨烯的高表面積的特性有效分散氧化鈷,結合硼摻雜還原氧化石墨稀 (B-rGO) 所造成的正電荷缺陷,提升氧氣還原及氧氣析出反應活性。
      由XRD分析結果顯示,本研究以水熱法製備之氧化鈷擔載於硼摻雜還原氧化石墨烯,同時具有四氧化三鈷(Co3O4)和氫氧化鈷(Co(OH)2)的氧化鈷結晶型態。比較不同觸媒,在0.1 M KOH中以1 mV/s掃描速率進行LSV電化學測試,CoOx/0.5M B-rGO在氧氣還原反應的起始電位為-0.112 V (vs. Ag/AgCl),正於Co3O4和0.5M B-rGO;在氧氣析出反應的起始電位為-0.516 V(vs. Ag/AgCl),負於Co3O4和0.5M B-rGO。硼摻雜能同時提升氧氣還原與氧氣析出活性。複合型觸媒會產生協同作用(synergistic effect),氧化鈷與硼摻雜還原氧化石墨烯會共同提升電化學活性。比較氧化鈷擔載於各種硼量摻雜還原氧化石墨烯,由LSV測試結果顯示,在氧氣還原反應,CoOx/0.5M B-rGO具有最正的起始電位-0.112 V (vs. Ag/AgCl);在氧氣析出反應,CoOx/1.5M B-rGO具有最負的起始電位0.505 V (vs. Ag/AgCl)。
      氧化鈷擔載於各種硼量摻雜還原氧化石墨烯在熱處理後,所有複合型觸媒的氧氣還原反應活性皆下降,而CoOx/0.5M B-rGO的氧氣析出活性反而提高,有最負的起始電位0.479 V (vs. Ag/AgCl),由XRD分析圖發現Co(OH)2繞射峰消失,推測熱處理會破壞氫氧化鈷結構,造成電化學活性提升或下降。

    The cobalt oxide on boron doped reduced graphite oxide (CoOx/B-rGO) was simultaneously synthesized by hydrothermal method in the presence of boric acid. The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results revealed that the composite includes both Co3O4 and Co(OH)2 crystalline structure. The X-ray photoelectron spectroscopy (XPS) analysis demonstrated the boron atoms were successfully doped into reduced graphite oxide structure. In 0.1 M KOH electrolyte, the composite showed a more positive onset potential at -0.112 V for oxygen reduction reaction (ORR) and a more negative onset potential at -0.516 V for oxygen evolution reaction (OER) than either Co3O4 or boron doped reduced graphite oxide (B-rGO). Due to synergetic effect and unique boron doping active sites, CoOx/B-rGO was a high-performance non-precious bifunctional catalyst for both ORR and OER.

    摘要 I 致謝 XIII 目錄 XIV 圖目錄 XIX 表目錄 XXVI 第一章 緒論 1 1.1 前言 1 1.2 燃料電池簡介 2 1.2.1 燃料電池的起源與簡介 2 1.2.2 燃料電池的種類 4 1.3 鹼性燃料電池 9 1.3.1 鹼性燃料電池簡介 9 1.3.2 再生型燃料電池簡介 11 第二章 原理與文獻回顧 14 2.1 氧氣反應 14 2.1.1 氧氣還原反應機制 15 2.1.2 氧氣析出反應機制 17 2.2 氧氣反應觸媒 19 2.2.1 氧氣還原反應觸媒 19 2.2.2 氧氣析出反應觸媒 21 2.3 氧化鈷觸媒 24 2.3.1 氧化鈷觸媒反應機制 24 2.3.2 氧化鈷觸媒製備方法 25 2.3.2.1 均勻沉澱法 25 2.3.2.2 機械球磨法 25 2.3.2.3 噴霧熱解法 26 2.3.2.4 溶膠-凝膠法 26 2.3.2.5 水熱法 26 2.4 觸媒擔體 27 2.4.1 石墨烯(graphene)及拆層石墨(exfoliated graphene) 27 2.4.2 石墨烯及拆層石墨製備方法 28 2.4.3 石墨烯及拆層石墨的表面修飾 29 2.4.3.1 氮摻雜修飾 29 2.4.3.2 硼摻雜修飾 32 2.5 電化學原理 36 2.5.1 循環伏安法 (Cyclic Voltammertry, CV) 36 2.5.2 線性掃描法 (Linear Sweep Voltammertry, LSV) 37 2.5.3 交流阻抗分析法 (Alternative Current Impedance Spectroscopy, ACIS) 38 2.6 研究動機與目的 44 第三章 實驗方法 45 3.1 實驗藥品 45 3.2 實驗儀器 46 3.3 觸媒製備 47 3.3.1 氧化石墨烯製備 (Graphite oxide, GO) 47 3.3.2 還原氧化石墨烯製備 (Reduced graphite oxide, rGO) 48 3.3.2.1 無摻雜還原氧化石墨烯製備 48 3.3.2.2 氮摻雜還原氧化石墨烯製備 49 3.3.2.3 硼摻雜還原氧化石墨烯製備 49 3.3.3 氧化鈷擔載於還原氧化石墨烯製備 50 3.3.3.1 氧化鈷擔載於無摻雜還原氧化石墨烯製備 50 3.3.3.2 氧化鈷擔載於氮摻雜還原氧化石墨烯製備 50 3.3.3.3 氧化鈷擔載於硼摻雜還原氧化石墨烯製備 51 3.3.4 氧化鈷擔載於硼摻雜還原氧化石墨烯熱處理製備 51 3.3.5 氧化鈷製備 52 3.4 電極漿料製備 52 3.5 參考電極製備 52 3.6 觸媒電化學活性測試 53 3.6.1 循環伏安法 54 3.6.2 線性掃描法 54 3.6.2.1 氧氣還原反應 54 3.6.2.2 氧氣析出反應 54 3.6.3交流阻抗分析 (AC impedance analysis) 55 3.7 觸媒特性分析 55 3.7.1 X射線繞射分析 (X-ray diffract scope) 55 3.7.2 掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 55 3.7.3 穿透式電子顯微鏡 (Transmission electron microscopy, TEM) 56 3.7.4 化學分析電子能譜儀 (Electron spectroscopy for chemical analysis, ESCA or XPS) 56 第四章 結果與討論 57 4.1 四氧化三鈷的反應機制 57 4.2 氧化鈷擔載於硼摻雜還原氧化石墨烯與其他觸媒之探討 60 4.2.1 X射線繞射儀分析 60 4.2.2 掃描式電子顯微鏡分析 65 4.2.3 穿透式電子顯微鏡分析 68 4.2.4 電化學活性分析 70 4.2.4.1 循環伏安法 70 4.2.4.2 線性掃描法 74 4.2.4.3 交流阻抗分析 83 4.3 氧化鈷擔載於各種硼量摻雜還原氧化石墨烯之行為 88 4.3.1 X射線繞射儀分析 88 4.3.2 掃描式電子顯微鏡分析 90 4.3.3 穿透式顯微鏡分析 92 4.3.4 化學電子能譜儀分析 95 4.3.5 電化學活性測試 99 4.3.5.1 循環伏安法 99 4.3.5.2 線性掃描法 101 4.3.5.3交流阻抗分析 104 4.4 熱處理對氧化鈷擔載於各種硼量摻雜還原氧化石墨烯之影響 109 4.4.1 X射線繞射儀分析 109 4.4.2 掃描式電子顯微鏡分析 111 4.4.3 穿透式顯微鏡分析 113 4.4.4電化學活性測試 116 4.4.4.1 循環伏安法 116 4.4.4.2 線性掃描法 120 4.5 綜合討論 124 第五章 結論 127 參考文獻 129 附錄 137

    [1] 廖惠珠, "石油危機知多少," 能源報導月刊, p. 24, 2002.
    [2] 郭柏堯, "全球石油危機的油價衝擊," 財團法人國家政治研究基金會, 2003.
    [3] 李堅明, " COP21《巴黎協定》之觀察與啟示," 能源報導月刊, p. 23, 2016.
    [4] 蔡信行, "替代燃料與再生能源," 科學發展月刊, vol. 365, 2003.
    [5] 許寧逸, "由碳能朝向氫能的燃料電池," 科學發展月刊, vol. 367, 2003.
    [6] 黃鎮江, "燃料電池," 全華科技圖書, 2003.
    [7] B. C. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature, vol. 414, p. 345-352, 2001.
    [8] M. Cifrain and K. Kordesch, "Hydrogen/oxygen (air) fuel cells with alkaline electrolytes," Handbook of fuel cells, 2003.
    [9] A. Hamnett, "Mechanism and electrocatalysis in the direct methanol fuel cell," Catalysis Today, vol. 38, p. 445-457, 1997.
    [10] 張瀠方, "非鉑系觸媒應用在鹼性燃料電池中氧氣還原反應之研究," 國立交通大學材料科學與工程研究所碩士論文, p. 8-11, 2008.
    [11] 張揚健, 毛宗強, 謝曉峰, and 王誠, "再生燃料電池的研究與應用," 化學進展, vol. 18, p. 636-639, 2006.
    [12] 宋世棟, 張華民, 馬霄平, 張益寧, and 衣寶廉, "一體式可再生燃料電池," 化學進展, vol. 18, pp. 1376-1379, 2006.
    [13] T. Kato, M. Kubota, N. Kobayashi, and Y. Suzuoki, "Effective utilization of by-product oxygen from electrolysis hydrogen production," Energy, vol. 30, pp. 2580-2595, 2005.
    [14] J. Lee, B. Jeong, and J. D. Ocon, "Oxygen electrocatalysis in chemical energy conversion and storage technologies," Current Applied Physics, vol. 13, p. 309-321, 2013.
    [15] X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F. T. Goh, et al., "Oxygen reduction in alkaline media: From mechanisms to recent advances of catalysts," ACS Catalysis, vol. 5, p. 4643-4667, 2015.
    [16] H. S. Wroblowa and G. Razumney, "Electroreduction of oxygen: A new mechanistic criterion," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 69, p. 195-201, 1976.
    [17] E. Yeager, "Electrocatalysts for O2 reduction," Electrochimica Acta, vol. 29, p. 1527-1537, 1984.
    [18] T. Toda, H. Igarashi, H. Uchida, and M. Watanabe, "Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co," Journal of The Electrochemical Society, vol. 146, p. 3750-3756, 1999.
    [19] Y. Matsumoto, H. Yoneyama, and H. Tamura, "Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel oxide and related oxides," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 79, p. 319-326, 1977.
    [20] I. Roche, E. Chaînet, M. Chatenet, and J. Vondrák, "Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism," The Journal of Physical Chemistry C, vol. 111, pp. 1434-1443, 2007.
    [21] Y. Liang, H. Wang, P. Diao, W. Chang, G. Hong, Y. Li, et al., "Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes," Journal of the American Chemical Society, vol. 134, p. 15849-15857, 2012.
    [22] Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, et al., "Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts," Journal of the American Chemical Society, vol. 134, p. 3517-3523, 2012.
    [23] X. Zhang, X. Wang, L. Le, A. Ma, and S. Lin, "Electrochemical growth of octahedral Fe3O4with high activity and stability toward the oxygen reduction reaction," J. Mater. Chem. A, vol. 3, p. 19273-19276, 2015.
    [24] W. Vielstich, H. Yokokawa, and H. A. Gasteiger, Handbook of fuel cells: fundamentals technology and applications: John Wiley & Sons, 2009.
    [25] F. Cheng and J. Chen, "Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts," Chemical Society Reviews, vol. 41, p. 2172-2192, 2012.
    [26] J. Suntivich, H. A. Gasteiger, N. Yabuuchi, H. Nakanishi, J. B. Goodenough, and Y. Shao-Horn, "Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries," Nature chemistry, vol. 3, p. 546-550, 2011.
    [27] E. Antolini, "Iridium As Catalyst and Cocatalyst for Oxygen Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers and Fuel Cells," ACS Catalysis, vol. 4, p. 1426-1440, 2014.
    [28] J. Kibsgaard, Y. Gorlin, Z. Chen, and T. F. Jaramillo, "Meso-structured platinum thin films: active and stable electrocatalysts for the oxygen reduction reaction," J Am Chem Soc, vol. 134, pp. 7758-65, May 9 2012.
    [29] M. Rojas, M. Esplandiu, L. Avalle, E. Leiva, and V. Macagno, "The oxygen and chlorine evolution reactions at titanium oxide electrodes modified with platinum," Electrochimica acta, vol. 43, p. 1785-1794, 1998.
    [30] T. Reier, M. Oezaslan, and P. Strasser, "Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials," Acs Catalysis, vol. 2, pp. 1765-1772, 2012.
    [31] G. Lodi, E. Sivieri, A. De Battisti, and S. Trasatti, "Ruthenium dioxide-based film electrodes," Journal of Applied Electrochemistry, vol. 8, p. 135-143, 1978.
    [32] M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, et al., "Efficient water oxidation using nanostructured alpha-nickel-hydroxide as an electrocatalyst," J Am Chem Soc, vol. 136, p. 7077-84, May 14 2014.
    [33] Q. Liu, J. Jin, and J. Zhang, "NiCo2S4@graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions," ACS Appl Mater Interfaces, vol. 5, p. 5002-8, Jun 12 2013.
    [34] M. R. Gao, Y. F. Xu, J. Jiang, Y. R. Zheng, and S. H. Yu, "Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite," J Am Chem Soc, vol. 134, p. 2930-3, Feb 15 2012.
    [35] Y. Gorlin and T. F. Jaramillo, "A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation," Journal of the American Chemical Society, vol. 132, p. 13612-13614, 2010.
    [36] M. E. Lyons and M. P. Brandon, "A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base," Journal of Electroanalytical Chemistry, vol. 641, p. 119-130, 2010.
    [37] J. T. Mefford, X. Rong, A. M. Abakumov, W. G. Hardin, S. Dai, A. M. Kolpak, et al., "Water electrolysis on La1-xSrxCoO3-delta perovskite electrocatalysts," Nat Commun, vol. 7, p. 11053, 2016.
    [38] J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, and Y. Shao-Horn, "A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles," Science, vol. 334, pp. 1383-1385, 2011.
    [39] T. Sarjono, "Using Mesoporous Nb-doped TiO2 supported Co3O4 as Oxygen Evolution Electrocatalyst in Alkaline Medium," National Taiwan University of Science and Technology 2014.
    [40] V. M. Jalan, "Noble metal/vanadium alloy catalyst and method for making," ed: Google Patents, 1980.
    [41] H. Yang, N. Alonso-Vante, J.-M. Léger, and C. Lamy, "Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes," The Journal of Physical Chemistry B, vol. 108, p. 1938-1947, 2004.
    [42] L. Santos, C. Oliveira, I. Moraes, and E. Ticianelli, "Oxygen reduction reaction in acid medium on Pt–Ni/C prepared by a microemulsion method," Journal of Electroanalytical Chemistry, vol. 596, p. 141-148, 2006.
    [43] F. Luczak and D. Landsman, "Ternary fuel cell catalysts containing platinum, cobalt and chromium," 1984.
    [44] K. Neyerlin, R. Srivastava, C. Yu, and P. Strasser, "Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR)," Journal of Power Sources, vol. 186, p. 261-267, 2009.
    [45] Z. Wen, S. Yang, Y. Liang, W. He, H. Tong, L. Hao, et al., "The improved electrocatalytic activity of palladium/graphene nanosheets towards ethanol oxidation by tin oxide," Electrochimica Acta, vol. 56, p. 139-144, 2010.
    [46] M. Lefèvre, E. Proietti, F. Jaouen, and J.-P. Dodelet, "Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells," science, vol. 324, p. 71-74, 2009.
    [47] G. Wu, K. L. More, C. M. Johnston, and P. Zelenay, "High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt," Science, vol. 332, p. 443-447, 2011.
    [48] Z. S. Wu, S. Yang, Y. Sun, K. Parvez, X. Feng, and K. Mullen, "3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction," J Am Chem Soc, vol. 134, p. 9082-5, Jun 6 2012.
    [49] M. Hamdani, R. Singh, and P. Chartier, "Co3O4 and Co-based spinel oxides bifunctional oxygen electrodes," Int. J. Electrochem. Sci, vol. 5, p. 556, 2010.
    [50] W. Wang, D. Zheng, C. Du, Z. Zou, X. Zhang, B. Xia, et al., "Carbon-supported Pd-Co bimetallic nanoparticles as electrocatalysts for the oxygen reduction reaction," Journal of Power Sources, vol. 167, p. 243-249, 2007.
    [51] Y. Lee, J. Suntivich, K. J. May, E. E. Perry, and Y. Shao-Horn, "Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions," The journal of physical chemistry letters, vol. 3, p. 399-404, 2012.
    [52] Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, et al., "Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction," Nature materials, vol. 10, p. 780-786, 2011.
    [53] Y. Q. Gao, H. B. Li, and G. W. Yang, "Amorphous Co(OH)2 nanosheet electrocatalyst and the physical mechanism for its high activity and long-term cycle stability," Journal of Applied Physics, vol. 119, p. 034902, 2016.
    [54] P. Y. Keng, B. Y. Kim, I.-B. Shim, R. Sahoo, P. E. Veneman, N. R. Armstrong, et al., "Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires," ACS nano, vol. 3, p. 3143-3157, 2009.
    [55] J. Cheng, X. Chen, J.-S. Wu, F. Liu, X. Zhang, and V. P. Dravid, "Porous cobalt oxides with tunable hierarchical morphologies for supercapacitor electrodes," CrystEngComm, vol. 14, p. 6702-6709, 2012.
    [56] X. Tang, J. Li, and J. Hao, "Synthesis and characterization of spinel Co3O4 octahedra enclosed by the {111} facets," Materials Research Bulletin, vol. 43, p. 2912-2918, 2008.
    [57] 蔡振平, "鋰離子蓄電池負級材料Co3O4的製備及性能," 電源技術, vol. 27, p. 370-372, 2003.
    [58] P. Nkeng, J.-F. Koenig, J. Gautier, P. Chartier, and G. Poillerat, "Enhancement of surface areas of Co 3 O 4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis," Journal of Electroanalytical Chemistry, vol. 402, p. 81-89, 1996.
    [59] G. Spinolo, S. Ardizzone, and S. Trasatti, "Surface characterization of Co 3 O 4 electrodes prepared by the sol-gel method," Journal of Electroanalytical Chemistry, vol. 423, p. 49-57, 1997.
    [60] H. Wang, T. Maiyalagan, and X. Wang, "Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications," Acs Catalysis, vol. 2, p. 781-794, 2012.
    [61] Z. Ni, H. Wang, J. Kasim, H. Fan, T. Yu, Y. Wu, et al., "Graphene thickness determination using reflection and contrast spectroscopy," Nano letters, vol. 7, p. 2758-2763, 2007.
    [62] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of modern physics, vol. 81, p. 109, 2009.
    [63] T. Ndlovu, O. Arotiba, S. Sampath, R. Krause, and B. Mamba, "Reactivities of modified and unmodified exfoliated graphite electrodes in selected redox systems," International Journal of Electrochemical Science, vol. 7, p. 9441-9453, 2012.
    [64] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," science, vol. 306, p. 666-669, 2004.
    [65] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, p. 1312-1314, 2009.
    [66] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, p. 1191-1196, 2006.
    [67] M. Acik and Y. J. Chabal, "A review on reducing graphene oxide for band gap engineering," Journal of Materials Science Research, vol. 2, p. 101, 2012.
    [68] H. J. Shin, K. K. Kim, A. Benayad, S. M. Yoon, H. K. Park, I. S. Jung, et al., "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance," Advanced Functional Materials, vol. 19, p. 1987-1992, 2009.
    [69] Y. Liu, Y. Zhang, G. Ma, Z. Wang, K. Liu, and H. Liu, "Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor," Electrochimica Acta, vol. 88, pp. 519-525, 2013.
    [70] S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, "Hydrazine-reduction of graphite-and graphene oxide," Carbon, vol. 49, p. 3019-3023, 2011.
    [71] H. Raghubanshi, M. Hudson, and O. Srivastava, "Effect of Ambient Gas Pressure on the Thermal Exfoliation of Graphite Oxide: Tuning the Number of Graphene Sheets," arXiv preprint arXiv:1302.4220, 2013.
    [72] X. Chen, D. He, and S. Mu, " 掺氮石墨烯研究," 化學進展, vol. 25, p. 1292-1301, 2013.
    [73] J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W.-F. Hwang, and J. M. Tour, "Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets," Journal of the American Chemical Society, vol. 130, p. 16201-16206, 2008.
    [74] S. Mayavan, H.-S. Jang, M.-J. Lee, S. H. Choi, and S.-M. Choi, "Enhancing the catalytic activity of Pt nanoparticles using poly sodium styrene sulfonate stabilized graphene supports for methanol oxidation," Journal of Materials Chemistry A, vol. 1, p. 3489-3494, 2013.
    [75] R. I. Jafri, N. Rajalakshmi, and S. Ramaprabhu, "Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell," Journal of Materials Chemistry, vol. 20, p. 7114-7117, 2010.
    [76] Y. Okamoto, "First-principles molecular dynamics simulation of O2 reduction on nitrogen-doped carbon," Applied Surface Science, vol. 256, p. 335-341, 2009.
    [77] K. N. Wood, R. O'Hayre, and S. Pylypenko, "Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications," Energy & Environmental Science, vol. 7, p. 1212-1249, 2014.
    [78] R. Hsu, "Nanostructured Non-Precious Metal Catalysts for Polymer Electrolyte Fuel Cell," 2010.
    [79] H. Peng, Z. Mo, S. Liao, H. Liang, L. Yang, F. Luo, et al., "High performance Fe-and N-doped carbon catalyst with graphene structure for oxygen reduction," Scientific reports, vol. 3, 2013.
    [80] 謝宜女勻, "以快速加熱法合成含氮拆層石墨及其應用在質子交換膜燃料電池之陰極觸媒特性," 國立成功大學化學工程學系碩士論文, 2014.
    [81] A. M. Ferraria, J. D. L. da Silva, and A. M. B. do Rego, "XPS studies of directly fluorinated HDPE: problems and solutions," Polymer, vol. 44, p. 7241-7249, 2003.
    [82] L. Sun, L. Wang, C. Tian, T. Tan, Y. Xie, K. Shi, et al., "Nitrogen-doped graphene with high nitrogen level via a one-step hydrothermal reaction of graphene oxide with urea for superior capacitive energy storage," Rsc Advances, vol. 2, p. 4498-4506, 2012.
    [83] U. Martinez, J. H. Dumont, E. F. Holby, K. Artyushkova, G. M. Purdy, A. Singh, et al., "Critical role of intercalated water for electrocatalytically active nitrogen-doped graphitic systems," Science advances, vol. 2, p. e1501178, 2016.
    [84] L. Qu, Y. Liu, J.-B. Baek, and L. Dai, "Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells," ACS nano, vol. 4, p. 1321-1326, 2010.
    [85] E. J. Biddinger, D. Von Deak, and U. S. Ozkan, "Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts," Topics in Catalysis, vol. 52, p. 1566-1574, 2009.
    [86] S. Ci, Y. Wu, J. Zou, L. Tang, S. Luo, J. Li, et al., "Nitrogen-doped graphene nanosheets as high efficient catalysts for oxygen reduction reaction," Chinese Science Bulletin, vol. 57, p. 3065-3070, 2012.
    [87] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, and X.-H. Xia, "Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis," ACS nano, vol. 5, p. 4350-4358, 2011.
    [88] S. Wang, D. Yu, L. Dai, D. W. Chang, and J.-B. Baek, "Polyelectrolyte-functionalized graphene as metal-free electrocatalysts for oxygen reduction," ACS nano, vol. 5, p. 6202-6209, 2011.
    [89] A. B. Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, A. K. Stubos, and C. Trapalis, "Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes," Solid State Communications, vol. 149, p. 2172-2176, 2009.
    [90] P. Lazar, R. Zbořil, M. Pumera, and M. Otyepka, "Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties," Physical Chemistry Chemical Physics, vol. 16, p. 14231-14235, 2014.
    [91] X. Li, L. Fan, Z. Li, K. Wang, M. Zhong, J. Wei, et al., "Boron Doping of Graphene for Graphene–Silicon p–n Junction Solar Cells," Advanced Energy Materials, vol. 2, p. 425-429, 2012.
    [92] Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang, and X.-H. Xia, "Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells," Journal of Materials Chemistry, vol. 22, p. 390-395, 2012.
    [93] L. Niu, Z. Li, W. Hong, J. Sun, Z. Wang, L. Ma, et al., "Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors," Electrochimica Acta, vol. 108, p. 666-673, 2013.
    [94] U. Palnitkar, R. V. Kashid, M. A. More, D. S. Joag, L. Panchakarla, and C. Rao, "Remarkably low turn-on field emission in undoped, nitrogen-doped, and boron-doped graphene," Applied Physics Letters, vol. 97, p. 063102, 2010.
    [95] T. V. Vineesh, M. P. Kumar, C. Takahashi, G. Kalita, S. Alwarappan, D. K. Pattanayak, et al., "Bifunctional Electrocatalytic Activity of Boron-Doped Graphene Derived from Boron Carbide," Advanced Energy Materials, vol. 5, 2015.
    [96] L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, et al., "Synthesis, structure and properties of boron and nitrogen doped graphene," arXiv preprint arXiv:0902.3077, 2009.
    [97] 胡啟章, "電化學原理與方法," 五南圖書出版公司, 2002.
    [98] X. Chen, K. Eckhard, M. Zhou, M. Bron, and W. Schuhmann, "Electrocatalytic activity of spots of electrodeposited noble-metal catalysts on carbon nanotubes modified glassy carbon," Analytical chemistry, vol. 81, p. 7597-7603, 2009.
    [99] X. Dang, A. M. Massari, and J. T. Hupp, "Electrochemically Modulated Diffraction A Novel Strategy for the Determination of Conduction‐Band‐Edge Energies for Nanocrystalline Thin‐Film Semiconductor Electrodes," Electrochemical and Solid-State Letters, vol. 3, p. 555-558, 2000.
    [100] D. Wang, X. Chen, D. G. Evans, and W. Yang, "Well-dispersed Co3O4/Co2 MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions," Nanoscale, vol. 5, p. 5312-5315, 2013.
    [101] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical methods: fundamentals and applications vol. 2: Wiley New York, 1980.
    [102] E. Barsoukov and J. R. Macdonald, Impedance spectroscopy: theory, experiment, and applications: John Wiley & Sons, 2005.
    [103] 林賜岱, "直接甲醇燃料電池陽極反應之研究," 國立台灣科技大學化學工程學系碩士論文, 2002.
    [104] Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, "Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets," Journal of the American Chemical Society, vol. 130, p. 5856-5857, 2008.
    [105] M. Pourbaix, "Atlas of electrochemical equilibria in aqueous solutions," 1974.
    [106] D. Powell, J. Cortez, and E. Mellon, "A laboratory exercise introducing students to the Pourbaix for cobalt," J. Chem. Educ, vol. 64, p. 165, 1987.
    [107] Y. Bai, W. Liu, C. Yu, T. Wang, J. Feng, and S. Xiong, "One-Pot Solvothermal Synthesis of ZnO@α-Co(OH)2 Core–Shell Hierarchical Microspheres with Superior Lithium Storage Properties," The Journal of Physical Chemistry C, vol. 120, p. 2984-2992, 2016.
    [108] A. V. Naumkin, A. Kraut-Vass, S. W. Gaarenstroom, and C. J. Powell, "NIST X-ray Photoelectron Spectroscopy Database " National Institute of Standards and Technology, 2012.
    [109] G.-X. MA, J.-H. ZHAO, Z. Jian-Feng, and Z. Zhen-Ping, "Synthesis of nitrogen-doped graphene and its catalytic activity for the oxygen reduction reaction in fuel cells," 新型碳材料, vol. 27, p. 258-263, 2012.
    [110] B. Shan and K. Cho, "Oxygen dissociation on nitrogen-doped single wall nanotube: A first-principles study," Chemical Physics Letters, vol. 492, p. 131-136, 2010.
    [111] L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, et al., "Boron‐Doped Carbon Nanotubes as Metal‐Free Electrocatalysts for the Oxygen Reduction Reaction," Angewandte Chemie, vol. 123, p. 7270-7273, 2011.
    [112] Y. Cheng, Y. Tian, X. Fan, J. Liu, and C. Yan, "Boron Doped Multi-walled Carbon Nanotubes as Catalysts for Oxygen Reduction Reaction and Oxygen Evolution Reactionin in Alkaline Media," Electrochimica Acta, vol. 143, p. 291-296, 2014.
    [113] Q. Liu, J. Jin, and J. Zhang, "NiCo2S4@ graphene as a bifunctional electrocatalyst for oxygen reduction and evolution reactions," ACS applied materials & interfaces, vol. 5, p. 5002-5008, 2013.
    [114] M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, et al., "Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst," Journal of the American Chemical Society, vol. 136, p. 7077-7084, 2014.
    [115] M.-R. Gao, Y.-F. Xu, J. Jiang, Y.-R. Zheng, and S.-H. Yu, "Water oxidation electrocatalyzed by an efficient Mn3O4/CoSe2 nanocomposite," Journal of the American Chemical Society, vol. 134, p. 2930-2933, 2012.
    [116] W. Xiao, D. Wang, and X. W. Lou, "Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction," The Journal of Physical Chemistry C, vol. 114, p. 1694-1700, 2009.

    下載圖示 校內:2018-08-08公開
    校外:2018-08-08公開
    QR CODE