簡易檢索 / 詳目顯示

研究生: 方志中
Fang, Chih-Chung
論文名稱: CMOS MEMS 微開關之系統分析、感測電路設計及元件初步製作
System analysis , sensing circuits design and preliminary fabrication of micro switches using CMOS MEMS process
指導教授: 陳國聲
Chen, Kuo-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 167
中文關鍵詞: 電容感測運算放大器靜電致動微開關CMOS MEMS
外文關鍵詞: micro switches, CMOS MEMS, electrostatic actuations, operational amplifiers, capacitive sensing
相關次數: 點閱:121下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微機電開關在反覆的切換過程中經常會受到機械衝擊,因此其疲勞
    破壞是影響系統可靠度一個很大的因素,本實驗室研究團隊針對這個問題提出一系列的研究。在巨觀部分已完成電磁致動懸臂樑實驗。以及在理論部分提出數值分析等方法。然而在微觀的尺度下,無法直接藉由外界的儀器量測其位移以及接觸力之值,希望利用電路偵測開關切換時的位移變化,將有助於探討微開關之機械特性,故藉由 CIC 下線的方式,加入接近實際應用面的尺度。本研究將建立一個微開關系統,設計電容式感測電路並配合微開關的初步製作,並進行後製程測試。本文利用 CIC 委託台積電的 0.35 μm 製程進行微開關系統的設計與製作。開關的部分包含了上下、側向之懸臂樑以及雙鉗樑結構,懸臂樑之驅動電壓設計在5 到10 V,而雙鉗樑結構之驅動電壓超過30 V。感測電路設計的部分,包含微分器式以及差動輸出式兩種電路,其解析度範圍在12 mV/fF 至 19 mV/fF。完成晶片佈局後向 CIC 提出下線申請,由台積電代為製作。晶片完成之後,將進行測試,後製程部分在成功大學微奈米科技中心進行,其利用 BOE 或 Silox Vapox III 蝕刻介電層以釋放微結構。此外也針對運算放大器之交流、直流以及暫態等特性作測
    試,測試的結果由於外界雜訊干擾導致電路性能稍減,但是其趨勢與模擬符合。由於在後製程製作上的困難,目前無法順利製作出微開關,然而其中的經驗應當對未來對微開關上之設計以及製作有所助益。

    Contact type Microelectromechanical (MEMS) switches are usually subjected to mechanical impact forces during operation and the induced fatigue fracture is traditionally
    one major concerns for the reliability and longevity of these devices. Therefore, a systematic and integrated study on this subject is important and necessary. During the past three years, both the optimal dynamic scheme for switch operation and its associate numerical analysis schemes, as well as the validation using a macro scale equivalent system, have been performed by our research group. However, it still requires a micro switch structure to further validate the proposed scheme in MEMS. The motivation and goal of this work is therefore to design and fabricate a CMOS-MEMS switch system for measuring the dynamic behavior and to validate the proposed dynamic scheme. The TSMC 2P4M 0.35 μm process, supported by the Chip Implementation Center (CIC) is used to design and fabricate the test structures. Both cantilever and fixed-fixed beams are designed to perform either vertical or horizontal operations. The pull-in voltages are estimated as 5 to 10V in cantilever beam and over 30V in fixed-fixed beams. For the sensing circuit design, Both differentiator and differential output types capacitance sensing circuit are designed with gains ranged from 12 mV/fF to 19 mV/fF. This designs are layout and subsequently fabricated by TSMC through CIC tape out service. After finishing the chip fabrication, the post process are performed by us at NCKU using an etchant (either BOE or Silox Vapox III) to etch the dielectric layer for releasing the suspended structures of the micro switches . In addition, we also characterize the performance of the operational amplifiers and find that AC response, DC response, and Transient response are degraded by the presence of noise but the general trends of them are essentially identical to the predicted values using Hspice. Due to the unpredicted
    difficulty in post-processing, it fails to produce a workable switch currently. Nevertheless, the lessons and experiences gained from this work are still invaluable for future design and fabrication of MEMS contact siwtches .

    中文摘要I 英文摘要II 致謝III 目錄VI 表目錄XI 圖目錄XIII 符號說明XXII 第一章 緒論1 1.1 前言1 1.2 發展背景與研究近況3 1.3 研究動機與目的6 1.4 本文架構12 第二章 製程介紹14 2.1 微製造技術介紹14 2.1.1 積體電路製程技術15 2.1.2 面型微加工技術19 2.1.3 體型微加工技術19 2.1.4 微光刻電鑄造模技術20 2.2 CMOS MEMS 製程介紹21 2.2.1 CMOS MEMS 製程分類21 2.2.2 CMOS MEMS 晶圓廠簡介22 2.3 Multi User MEMS 介紹23 2.4 TSMC 0.35um 2P4M CMOS MEMS 製程介紹24 2.5 結論28 第三章 微開關系統之概念性設計29 3.1 微開關系統架構與設計考量29 3.2 微開關之結構33 3.3 微開關之靜電驅動分析35 3.4 微開關之感測電容分析39 3.5 微開關設計41 3.6 結論59 第四章 感測電路設計60 4.1 微分器式電容偵測電路60 4.1.1 雙級運算放大器設計分析61 4.1.2 雙級運算放大器之模擬以及佈局63 4.1.3 雙級疊接式運算放大器設計分析74 4.1.4 雙級疊接式運算放大器之模擬以及佈局83 4.2 差動輸出式電容感測電路之設計89 4.2.1 微電容感測電路架構89 4.2.2 微電容感測電路分析90 4.2.3 差動輸出式電容感測電路架構92 4.2.4 差動輸出式電容感測電路之模擬94 4.2.5 差動輸出式電容感測電路之佈局與後模擬98 4.3 電路性能比較102 4.4 結論103 第五章 歷次下線紀錄104 5.1 下線歷程以及系統設計考量104 5.2 第一次下線(D35-95D)107 5.3 第二次下線(MEMS35-95E)109 5.4 第三次下線(MEMS35-96A)112 5.5 第四次下線(MEMS35-96B)116 5.6 第五次下線(MEMS35-96C)118 5.7 結論121 第六章 實驗測試與結果討論122 6.1 CMOS MEMS晶片之後製程處理122 6.2 第一次下線(D35-95D)晶片之測試123 6.2.1 打線製程之設計與實做123 6.2.2 後製程處理測試130 6.3 第二次下線(MEMS35-95E)晶片之測試135 6.3.1 結構測試136 6.3.2 MEMS35-95E電路系統測試138 6.4 第三次下線(MEMS35-96A)晶片之測試143 6.4.1 結構之後製程處理測試143 6.5 結論150 第七章 本文結論與未來展望152 7.1 結論152 7.2 本文貢獻153 7.3 未來工作與展望154 參考文獻156 附錄 A 懸臂樑及雙鉗樑開關相關公式推導162

    [1] 微機電系統技術與應用, 行政院國家科學委員會精密儀器發展中心主編, 2003。
    [2] P. M. Zavracky, N. E. McGruer, R. H. Morrison, G. Jenkins and K. Warner, “Microswitches for Microwave and Other Applications,” Sensors, Vol. 15, No. 4, pp. 41, 1998.
    [3] P. M. Zavracky, S. Majumder and N. E. McGruer, “Micromechanical Switches Fabricated Using Nickel Surface Machining,” J. Microelectromech. Syst., Vol. 6, pp. 3-9, 1997.
    [4] I. Schiele, J. Huber, B. Hillerich, F. Kozlowski, “Surface-Micromachined Electrostatic Microrelay”, Sensors and Actuators A, Vol. 66, pp. 345-354, 1998.
    [5] D. Bloom, “The Grating Light Valve: Revolutionizing Display Technology,” Projection Displays III Symposium, SPIE Proceedings Vol. 3013, February, 1997.
    [6] J. J. Yao, “TOPICAL REVIEW RF MEMS from a device perspective,” J. Micromech. Microeng. Vol. 10 , R9–R38, 2000
    [7] G. M. Rebeiz and J. B. Muldavin, “RF MEMS switches and switch circuits,” IEEE Microwave Magazine, pp. 59-71, Dec. 2001.
    [8] K. E. Petersen, “Micromechanical Membrane Switch on Silicon,” IBM J. Res. Develop, vol. 23, No. 4, pp. 376-385, July 1979.
    [9] J. Rizk, G-L Tan, J. B. Muldavin, G. M. Rebeiz, “High-isolation W-band MEMS switches, ”IEEE Microwave and Wireless Components Letters, vol. 11 pp. 10-12, January 2001.
    [10] A. Margomenos, L. P. B. Katehi, “DC to 40GHz on-wafer package for RF MEMS switches,” Electrical Performance of Electronic Packaging, pp. 91-94, October 2002.
    [11] D. Peroulis, S. P. Pacheco, K. Sarabandi, L. P. B. Katehi, “Electromechancial considerations in developing low-voltage RF MEMS switches,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, January 2003.
    [12] C-L Dai and J-H Chen, “Low voltage actuated RF micromechanical switches fabricated using CMOS-MEMS technique,” Microsyst Technol vol. 12, pp. 1143–1151, 2006
    [13] K. M. Hiltmann, B. Schmidt, H. Sandmaier and W. Lang, “Development of Micromachined Switches with Increased Reliability,” Tech. Digest,1997 Int. Conf. on Solid-State Sensors and Acturators, pp. 1157, 1997.
    [14] J. Schimkat,“Contact Materials for Microrelays,”Proc. IEEE,11th Ann. Int.Workshop on Micro Electro Mechanical Systems, pp. 190-194, 1998.
    [15] C. Goldsmith, J. Ehmke, A. Malczewski, B. Pillans, S. Eschelman, Z. Yao, J. Brank and M. Eberly, “Lifetime characterization of capacitive RF MEMS switches, ”in IEEE MTT-S International Microwave Symposium, Phoenix, AZ, pp. 227-230, May 2001.
    [16] K-S Chen, L-M Li, and K-S Ou, “Accuracy Assessment of Simplified Electromechanical Coupling Solvers for MEMS Applications” J. Micromechanics & Microengineering, Vol. 14, pp. 159-169, 2004.
    [17] K-S Chen, J-F Yin, T-S Yang, and K-S Ou, “Vibration Suppression of a Cantilever Beam by Input Shaping,” J. Chinese Society of Mechanical Engineering, Vol. 25, pp. 59-67, 2004
    [18] K-S Chen, J-F Yin, T-S Yang, K-S Ou, "Residual Vibration Suppression of a Cantilever Beam Using Command Shaping Technology," Trans. Aeronautical and Astronautical Soc. ROC, Vol. 36, pp. 249-257, 2004.
    [19] S. Park and R. Horowitz, “Adaptive control for Z-Axis MEMS Gyroscopes,” Proceedings of the American Control Conference, Arlington VA , pp. 25-27, June 2001.
    [20] N. Yazdi,F. ayazi,and K. Najafi, “ Micromachined Inertial sensor’’, Proc.of the IEEE., pp. 1640-1659, Aug. 1998.
    [21] M.A. LEMKIN, B. E. Boser,D. Auslander, J. H. Smith,“A 3-axis force balanced accelerometer using a single proof-mass,”Solid State Sensors and Actuators, Vol. 2, pp. 1185-1188, 1997.
    [22] 楊龍杰, 認識微機電, 滄海書局, 民國 90 年 9 月。
    [23] N. Wongkomet, ”Position sensing for Electrostatic Micropositioners, Dept. of Electrical Engineering and Computer Sciences University of California, 1998.
    [24] H. Kulah, N. Yazdi, K. Najafi, “A CMOS Switched-Capacitor Interface Circuit for an Integrated Accelerometer,” Proc. 43rd IEEE Midwest Symp. on Circuits and Systems, Lansing MI, pp. 244-247, Aug. 8-11, 2000.
    [25] 莊達人, VLSI製造技術, 高立圖書, 2002。
    [26] H. Xiao, “Introduction to Semiconductor Manufacturing Technology,” Prentice Hall, 2001.
    [27] R. C. Jaeger, Introduction to Microelectronic Fabrication, 2nd ed., Prentice Hall, 2002.
    [28] M. J. Madou, “fundamentals of microfabrication”, 2nd, CRC,2002.
    [29] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface Micromachining
    for Microelectromechanical Systems,” Proceedings of the IEEE, Vol. 86, No. 8, pp. 1552-1574, August, 1998.
    [30] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk Micromachining of Silicon,” Proceedings of the IEEE, Vol. 86, No. 8, pp. 1536-1551, August, 1998.
    [31] 鄭英周,李其源,張培仁,陳炳輝, CMOS-MEMS 製程技術與電腦輔助微機電系統設計的整合研究, 國立臺灣大學「台大工程」學刊, 第九十一期, 第21–32頁, 民國九十三年六月。
    [32] H. Guckel, “High-Aspect-Ratio Micromachining Via Deep X-Ray Lithography,” Proceedings of the IEEE, Vol. 86, No. 8, pp. 1586-1593, August, 1998.
    [33] D. A. Koester, R. Mahadevan, B. Hardy, and K. W. Markus, MUMPs Design Handbook Rev.7.0, MCNC, 2001.
    [34] S. D. Senturia, Microsystem Design, Kluwer Academic Press, 2000.
    [35] J. M.Gere, mechanics of materials, Brooks/Cole 2001.
    [36] G. M. Rebeiz, RF MEMS theory, design, and technology, Wiley, 2003.
    [37] R. J. Roark and W. C. Young , Formulation for Stress and Strain, 6th edition, McGraw-Hill, New York, 1989.
    [38] K-S Chen, K-S Ou and L-M Li, “Development and accuracy assessment of simplified electromechanical coupling solvers for MEMS applications” Journal of Micromechanics and Microengineering, Vol. 14, pp. 159–169, 2004.
    [39] Y-C Hu and C-S Wei, “An analytical model considering the fringing fields for calculating the pull-in voltage of micro curled cantilever beams,” J. Micromech. Microeng, vol. 17, pp. 61–67, 2007.
    [40] C. O. Mahony, M. Hill, R. Duane and A. Mathewson, “Analysis of electromechanical boundary effects on the pull-in of micromachined fixed–fixed beams,” J. Micromech. Microeng. Vol. 13, S75–S80, 2003.
    [41] S. Pamidighantam, R. Puers, K. Baert and H. A. C. Tilmans, “Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions,” J. Micromech. Microeng. Vol. 12, pp. 458–464, 2002.
    [42] S. Gorthi,A. Mohanty and A. Chatterjee, “Cantilever beam electrostatic MEMS actuators beyond pull-in,” J. Micromech. Microeng. Vol. 16 , pp. 1800–1810, 2006.
    [43] D. J. Griffiths, Introduction to electrodynamics, Prentice Hall, 1999
    [44] G. T. A. Kovacs, Micromachined Transducers sourcebook, McGraw-Hill, International Editions, 2000.
    [45] 李裕仁, CMOS 梳狀致動器之設計與應用, 中興大學碩士論文, 民國 92 年。
    [46] 鄭立昇, 閉迴路控制之CMOS-MEMS熱致動器設計, 清華大學碩士論文, 民國 94 年。
    [47] B. Razavi, Design of analog CMOS integrated circuit, McGraw-Hill, 1996.
    [48] D. A. Johns and K. Martin, analog integrated circuit design, Wiley, 1997.
    [49] P. R. Gray and R. G. Meyer. “MOS Operational Amplifier Design—A Tutorial Overview,” IEEE J. of Solid-State Circuits, Vol. 17, No. 6, December 1982.
    [50] R. C. Yen and P. R. Gray. “A MOS Switched-Capacitor Instrumentation Amplifier,” IEEE J. of Solid-State Circuits, Vol. 17, No. 6, pp. 1008-1013,December 1982.
    [51] D. F. Hoeschele, Analog to digital and digital to analog conversion techniques, Wiley, 1994.
    [52] R. v. Plasche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, Kluwer Academic, 2003.
    [53] L. A. Williams. “Modeling and Design of High-Resolution Sigma-Delta Modulators,” Ph.D. Dissertation, Stanford University, August 1993.
    [54] I. Evans and T. York, “Microelectronic capacitance transducer for particle detection,” IEEE Sensor Journal, Vol. 4, pp 364-372, 2004.
    [55] I. Evans, A. Somerville and T. York, “A Sensing Circuit For Micro-Capacitance Tomography,” 1st World Congress on Industrial Process Tomography, Buxton, Greater Manchester, pp. 14-17, April 1999.
    [56] 林威勳, 以 CMOS/MEMS 及電化學蝕刻製程實作新型紅外線感測元件, 成功大學碩士論文, 2005。

    下載圖示 校內:2010-07-31公開
    校外:2010-07-31公開
    QR CODE