| 研究生: |
藍庭豪 Lan, Ting-Hao |
|---|---|
| 論文名稱: |
燃油噴注冷卻對小型雙推進劑液態火箭燃燒流場之影響 Effect of fuel impingement cooling on the combustion flow field in a bipropellant liquid rocket combustor |
| 指導教授: |
江滄柳
Jiang, Tsung-Leo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 數值模擬 、噴注冷卻 、雙推進劑液態火箭 |
| 外文關鍵詞: | bipropellant liquid rocket, numerical simulation, impingement cooling |
| 相關次數: | 點閱:119 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文針對小型雙推進劑MMH/NTO液態火箭引擎燃燒室,以數值方法模擬其燃燒流場。並探討在總燃料(MMH)噴注量固定不變之情形下,使用部分燃料噴向燃燒室壁來冷卻燃燒室壁面,對燃燒室之燃燒流場及壁面冷卻的影響。其中探討之可變參數包括:冷卻燃料噴注量之比例、冷卻用燃料碰撞壁面後之擴散角度及冷卻燃料注油之角度。分析結果發現,在本文之注油器型態之下,30%之冷卻燃料噴注比例,造成與NTO衝擊霧化之MMH減少,導致整體液滴的混合不均及燃燒效率不佳。而10%之冷卻燃料噴注比例造成與NTO衝擊霧化之MMH增加,使得燃燒較為集中於流場中心,並提高燃燒效率。在冷卻燃料之擴散角度方面,增加擴散角度有助於加大冷卻擴散面包覆燃燒室的範圍,對於燃燒室壁前端冷卻有較為顯著之影響。另外,增加冷卻燃料之噴注角度,會使得冷卻燃料提早碰撞燃燒室壁,而提早產生冷卻擴散面,降低燃燒室壁前端之局部高溫。此外,衝擊霧化正面擴散角度之大小亦會對燃燒室壁溫度產生影響,相較於60度之擴散角, 90度之擴散角度會導致散佈在霧化液膜外圍之液滴直接噴撞燃燒室壁,造成燃燒室壁前端產生高溫的現象。
In this thesis, the combustion flow in a small bipropellant liquid rocket combustor is numerically simulated. Effects of injecting partial fuel on the chamber wall for cooling are investigated. The parameters investigated include the ratio of the cooling fuel to the total injected fuel, the spray angle of the cooling fuel and the injection angle of the cooling fuel. The results obtained from the simulation show that the 30% ratio of the cooling fuel reduces the flow rate of MMH impinging with NTO, resulting in uneven mixing and lower combustion efficiency. The 10% ratio of the cooling fuel makes the combustion area concentrate in the center region of the combustor, increasing the combustion efficiency. Increasing the spray angle of the cooling fuel leads to a larger cover area of the cooling fuel on the chamber wall. The fore-end of the chamber wall is thus cooled more effectively. Additionally, a larger injection angle reduces the peak temperature of the fore-end wall of the combustor. Compared to the cases with a 60o atomization spray angle, the cases with a 90o atomization spray angle cause more droplets in the outer region of the spray flowing towards the chamber wall, resulting in higher temperature in the fore-end wall of the chamber.
1. P. Y. Liang, S. Fisher and Y. M. Chang, “Comprehensive Modeling of a Liquid Rocket Combustion Chamber,” Journal of Propulsion and Power, Vol. 2, No. 2, pp97-104, 1986.
2. P. Y. Liang, R. J. Jensen and Y. M. Chang, “Numerical Analysis of SSME Preburner Injector Atomization and Combustion Process,” Journal of Propulsion and Power, Vol. 3, No. 6, pp.508-514, 1987.
3. L. C. Cloutman, J. K. Dukowicz, J. D. Ramshaw and A. A. Amsden, “CONCHAS-SPRAY: A Computer Code for Reactive Flows with Fuel Sprays,” Los Alamos National Lab., Los Alamos, NM, Rept. LA-9294-MS, May 1982.
4. H. H. Chiu, T. L. Jiang, G. F. Berry, and E. J. Croke, “Analytical Prediction of Combustion Performance Characteristic of Bipropellant Liquid Rocket Engine Combustor,” 23rd JANNAF Combustion Meeting, NASA Langley Research Center, Hampton, Virginia, October 1986.
5. T. L. Jiang and H. H. Chiu, “Bipropellant Combustion in a Liquid Rocket Combustion Chamber,” Journal of Propulsion and Power, Vol. 8, pp. 995-1003, 1992.
6. T. L. Jiang, “Computer Simulation System of a Liquid-propellant Rocket Combustor (III),” Defense Technology Coordination Council, Report NSC-84-2623-D-006-004, 1995.
7. M. L. Louis and S. M. Jeng, “Bipropellant Spray Combustion Modeling in Small Rocket Engines,” AIAA/SAE/ASME/ASEE, 27th Joint Propulsion Conference, June 24-26, 1991.
8. J. D. Naber and R. D. Reitz, “Modeling Engine Spray/Wall Impin- gement ,” SAE 880107.
9. H. H. Chiu, T. L. Jiang, A. N. Krebsbach and K. W. Gross, “Numerical Analysis of Bipropellant Combustion in Orbital Maneuvering Vehicle Thrust Chamber,” AIAA Paper 90-0045, Jan. 1990.
10. O. Knab, D. Preclik, D. Estublier, “Flow Field Prediction within Liquid Film Cooled Combustion Chamber of Storable Bi-propellant Rocket engines,” AIAA Paper 98-3370.
11. G. P. Purohit, P. A. Donatelli, J. R. Ellison and V. K. Dhir, “Transient Thermal Model of a Film-Cooled Bipropellant Thruster,” AIAA Paper 2000-1072.
12. 郭保宏, “小型液態火箭三維燃燒室流場之數值模擬,” 國立成功大學航空太空工程研究所碩士論文, 2002.
13. W. S. Nie and F. C. Zhuang, “Hypergolic propellant rocket engine combustion instability studies,” Journal of Propulsion Technology, Vol.21 No.4, 2000.
14. R. N. Eulner, D. E. White and L. M. Wood, “High Speed Shadow and Schlieren Photographs of the Combustion of N2O4/50%/N2H4-50% UDMH in a Small Windowed Combustion Chamber,” 5th ICRPG Combustion Conference, PIA Publication No. 183, October 1-3, 1968.
15. R. F. Sawyer, “The Hydrazine-Nitrogen Tetroxide Reaction, A Comparison of Experimental Observations,” 3rd Combustion Conference, CPIA Publication Np. 138 Vol 1, February 1967.
16. T. L. Jiang, C. C. Liu, W. S. Chen, “Convective Fuel Droplet Burning Accompanied by an Oxidizer Droplet,” Combust. Sci. and Tech, 1994, Vol 97, pp. 271-301.
17. T. L. Jiang, W. Huang, and C. C. Liu, “Experimental and Numerical Investigations of Fuel Droplet Burning Accompanied by an Oxidizer Droplet,” Journal of the Chinese Society of Mechanical Engineers, Vol.17, No.4, pp.373-385, 1996.
18. 朱書宏, “小型液態火箭三維氣相燃燒流場之數值模擬,” 國立成功大學航空太空工程研究所碩士論文, 2002.
19. B. J. Matthews, R. F. Wuerker and R. F. Kemp, “Holography of Injection and Combustion Phenomena,” 6th ICRPG Combustion Conference, CPIA Publication No. 192, Vol. 1, December 1969.
20. D. D. Evans, H. B. Stanford, and R. W. Riebling, “The Effect of Injector-Element Scale on the Mixing and Combustion of Nitrogen Tetroxide-Hydrazine Propellants,” Technical Report 32-1178, Jet Propulsion Laboratory, California Institute of Technology, 1967.
21. L. B. Zung, and J. R. White, “Combustion Process of Impinging Hypergolic Propellants,” NASA CR-1704, 1971.
22. R. Lecourt, R. Foucaud, G. Lavergne, P. Berthoumieu, and P. Millan, “Hypergolic Propellant Burning Spray Visualization by Laser Sheet Method. Application to Droplet Size and Liquid Concentration Measurements,” Third Symposium on Experimental and Numerical Flow Visualization, 1993 ASME Winter Annual Meeting, USA, 1993.
23. Heidmann M.F., Priem R.J., “A Study of Sprays Formed by Two Impinging Jets” NACA-TN-3835, March 1957.
24. N. Dombrowski and P.C. Hooper, “A Study of the Sprays Formed by Impinging Jets in Laminar and turbulent Flow,” J. Fluid Mech., Vol.18, Pt.3, pp. 392-400, 1964.
25. W. E. Anderson, H. M. Ryan, and R. J. Santoro, “Impinging Jet Injector Atomization,” Liquid Propellant Rocket Combustion Instability, AIAA, 1990.
26. W. H. Lai, T. L. Jiang, and W. Huang, “Characteristic Study on the Like-doublet Impinging Jets Atomization,” Atomization and Sprays,vol. 9, 1999.
27. 陳威丞, “異質噴流衝擊霧化之觀察,” 國立成功大學航空太空工程研究所碩士論文, 2001.
28. Kihoon Jung, Youngbin Yoon, Sang-Soon Hwang, “Spray Characteristics of Impinging Jet Injectors Using Imaging Techniques,” 36th AIAA Joint Propulsion Conference Jun, AIAA, 2000.
29. 王修哲, “同質與異質衝擊式注油器霧化特性研究,” 國立成功大學航空太空工程研究所碩士論文, 2002.
30. A. A. Amsden, “KIVA-3: A KIVA Program with Block-Structured Mesh for Complex Geometries,” Los Alamos National Laboratory Report LA-12503-MS, 1993.
31. T. L. Jiang, “Numerical Analyses on the Combustor Performance of Various Side-Dump Liquid-Fueled Ramjets (I),” 國推會研究計劃報告書, NSC 88-2623-D-006-011, 1999.
32. S. Menon and W. H. Jou, “Large-Eddy Simulations of Combustion Instability in an Axisymmetric Ramjet Combustor,” Combustion Science and Technology, Vol. 75, pp. 53-72, 1991.
33. R. H. Yen and T. H. Ko, “Effects of Side-Inlet Angle in a Three- Dimensional Side-Dump Combustor,” Journal of Propulsion and Power, Vol. 9, No. 5, 1993.
34. D. G. Sloan, P. J. Smith and L. D. Smoot, “Modeling of Swirling in Turbulent Flow Systems,” Progress in Energy and Combustion Science, Vol. 12, pp. 163-250, 1986.
35. A. A. Amsden, P. J. O’Rourke, and T. D. Butler, “KIVA-II: A Computer Program for Chemically Reactive Flows with Sprays,” Los Alamos National Laboratory Report LA-11560-MS, 1989.
36. B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
37. Rotondi, R., Bella, G., Grimaldi, C., and Postrioti, L., “Atomization of High-Pressure Diesel Spray: Experimental Validation of a New Breakup Model,” SAE Technical Paper 2001-01-1070.
38. C. W. Hirt, A. A. Amsden, and J. L. Cook, J. Comput. Phys., Vol. 14, pp. 227, 1974.
39. W. E. Pracht, J. Comput. Phys., Vol. 17, pp.132, 1975.
40. S. V. Patankar, “Numerical Heat Transfer and Fluid Flow,” Hemisphere, Washington, D. C., 1980.
41. 朱建儒, “異質衝擊噴流霧化與混合之研究,” 國立成功大學航空太空工程研究所碩士論文, 2003.