簡易檢索 / 詳目顯示

研究生: 饒筱薇
Jao, Hsiao-Wei
論文名稱: 適當抗生素治療的時間對腸球菌血流感染病人結果的影響
Impact of Time to Appropriate Antibiotic Therapy on Patient Outcomes in Enterococcal Bloodstream Infections
指導教授: 鄭靜蘭
Cheng, Ching-Lan
共同指導教授: 王竣令
Wang, Jing-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 155
中文關鍵詞: 腸球菌血流感染萬古黴素抗藥性適當抗生素治療時間分類和回歸樹分析
外文關鍵詞: enterococcus bloodstream infection, vancomycin resistant, time to appropriate therapy, classification and regression tree
相關次數: 點閱:65下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景
    腸球菌(Enterococcus spp.)隨著抗生素廣泛使用、侵入性裝置的介入,近年來已成為院內感染的主要致病菌之一,其中以Enterococcus faecalis和Enterococcus faecium最為常見。根據2017年衛生福利部疾病管制署統計,自2010年開始,腸球菌在院內引發的感染症,以血流感染最多,占40%。近年E. faecium的抗藥性逐漸升高,根據成大醫院感染管制中心統計,2019年1-6月E. faecium對vancomycin的抗藥性比率已高達五成以上,具抗藥基因之病患有較高的死亡率,因此及時給予適當的抗生素治療成為日趨重要的議題。目前文獻多排除院外感染及免疫低下的病人,血流感染之適當抗生素治療的時間切點,對於這群患者仍有待研究確認。

    目的
    本研究目的將分析腸球菌血流感染病人接受適當抗生素治療的時間切點與30天死亡率之相關性;並探討腸球菌血流感染之病人,若是延遲適當的抗生素治療,對於後續治療成效的影響。

    方法
    本研究為單中心回溯性世代研究,以病歷回顧方式納入2014年10月1日至2019年5月31日於成大醫院採檢為腸球菌血流感染之病人。採檢時為年齡20歲以上並接受適當抗生素治療的住院病人,若多次腸球菌血流感染事件,則只納入第一次為指標日期。排除轉院來已在其他醫院記錄腸球菌血流感染、HIV患者、指標日期前已接受適當抗生素治療、或30天內失去追蹤者等,且根據病人臨床特徵區分為院內感染型(指入院48小時後發生腸球菌血流感染之患者)及社區型感染(指入院48小時內發生腸球菌血流感染之患者;包含社區醫療機構相關感染及社區感染);絕對嗜中性白血球低下(absolute neutrophil count<500 cells/µL);接受腎臟替代治療;多重菌種感染等。指標時間(index time)為血液培養呈腸球菌陽性的採檢時間,接受適當抗生素治療時間定義為自指標時間至病人使用到細菌培養藥敏試驗中,具感受性的藥物。同時使用Charlson comorbidity index評估共病症,感染嚴重度會根據Pitt bacteremia score、SOFA score評估。本研究分析方式採用分類和回歸樹(classification and regression tree, CART)分析確立適當治療的時間切點,以及使用ROC曲線呈現30天死亡率與時間切點之預測性。多變量分析則利用羅吉斯迴歸模型(logistic regression model)分析延遲治療對30天死亡率和延遲治療預測因子的獨立關聯。

    結果
    本研究共納入673位病人,其中211位病人於指標日期30天內發生死亡,30天死亡率為31.4%。結果發現指標日期30天內死亡的病人,其平均接受適當抗生素治療的時間明顯晚於存活者(死亡組 vs 存活組: 54.7小時;37.5小時)p值<0.0001。由CART分析與30天死亡率的時間切點為26.1小時,並使用ROC曲線證實CART之預測數值。26.1小時前接受適當抗生素的病人分為及早治療組,而26.1小時以後接受適當抗生素的病人則為延遲治療組。及早治療組與延遲治療組分別為258人、415人。在羅吉斯多因子迴歸分析中,具萬古黴素抗藥性在校正可能的干擾因素後,aOR為5.67(95% CI, 3.02-10.64)。延遲治療≥26.1小時相對及早治療組有兩倍左右的死亡風險(aOR, 1.92 [95% CI, 1.22-3.01]),及早治療組與延遲治療組30天死亡率分別為17.8%與39.8%,p值<0.0001。透過CART次族群分析發現在不同程度的疾病嚴重度下,與30天死亡率最相關之時間切點會隨之變化,較輕症的病人(如: 社區醫療機構相關感染或社區感染)可以延長至48小時以上,而疾病嚴重度高者(SOFA分數≥13)接受適當治療的時間段縮短,需在6至12小時內接受適當抗生素治療,且有更高的死亡率。VRE血流感染、免疫不全的病人同樣須及早接受適當治療。在敏感性與次族群分析中,研究結果的方向性與主要結果相同。 

    結論
    對於患有腸球菌血流感染的患者,在開始的26小時內接受適當的治療可降低死亡率。感染症嚴重程度較高的病人,更突顯及時接受適當抗生素治療的重要性。嚴重程度較輕微,如:社區感染和免疫正常患者,由於死亡風險相對較低,可以忍受更長的時間才接受適當的治療。造成延遲治療的重要因素為抗藥性菌株的出現,尤其為VRE菌株。

    With increasing prevalence of vancomycin-resistant enterococci (VRE), appropriate antibiotic therapy (AAT) for enterococcal bloodstream infections (EBSI) can be delayed. Data regarding the impact of delayed therapy on EBSI outcomes are either rare or conflicting, and the time delay of AAT most strongly associated with poor outcomes has not been defined in community-onset or neutropenia patients. We conducted a retrospective cohort study by using classification and regression tree to determine the association between the breakpoint of time to AAT and 30-day mortality for EBSI. From October 2014 to May 2019, 673 patients were finally included in National Kung University Hospital (NCKUH). A breakpoint of time to AAT was 26.1 hours. In multivariate analysis, vancomycin resistance was an independent predictor of delayed therapy, and delayed therapy ≥26.1 hours was associated with a 2-fold increase in 30-day mortality (aOR, 1.92 [95% CI, 1.22-3.01]). In subgroup analysis, in patients with immunocompromised, receipt of appropriate therapy within 24 hours was associated with reduced mortality. Mild disease severity patients such as community-onset EBSI, and immunocompetent patients can tolerate longer breakpoint of time to AAT. The sensitivity analysis was consistent with main findings

    中文摘要 i 誌謝 vii 第一篇、適當抗生素治療的時間對腸球菌血流感染病人結果的影響 1 第一章、研究背景 1 第二章、文獻回顧 2 第一節、腸球菌血流感染簡介 2 第二節、適當抗生素治療時間對病人預後影響 18 第三章、研究目的 24 第四章、研究方法 26 第一節、研究設計 26 第二節、定義 28 第四節、統計方法 39 第五節、決策樹 40 第六節、研究變項欄位路徑與操作定義 42 第五章、研究結果 50 第一節、研究對象納入與排除 50 第二節、原始資料 52 第三節、適當抗生素治療的時間切點 56 第四節、病人臨床特徵及適當抗生素治療預後之資料 80 第六章、討論 113 第一節、研究結果 113 第二節、研究對象 114 第三節、微生物學 117 第四節、適當抗生素治療表現與結果 118 第五節、研究優勢與限制 134 第七章、結論與建議 136 第八章、未來研究方向 137 第二篇、臨床藥事服務 兒童白血病標靶治療之衛教服務 138 第一章、服務動機 138 第二章、服務目的與方法 139 第一節、目的 139 第二節、方法 139 第三章、執行成果 149 第四章、討論與未來展望 150 參考文獻 151 附件一 155

    1. Lodise, T.P., Jr., et al., Predictors of 30-day mortality among patients with Pseudomonas aeruginosa bloodstream infections: impact of delayed appropriate antibiotic selection. Antimicrob Agents Chemother, 2007. 51(10): p. 3510-5.
    2. TP, L., et al., Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. 2003.
    3. Zasowski, E.J., et al., Time Is of the Essence: The Impact of Delayed Antibiotic Therapy on Patient Outcomes in Hospital-Onset Enterococcal Bloodstream Infections. Clin Infect Dis, 2016. 62(10): p. 1242-1250.
    4. 衛生福利部疾病管制署, 台灣院內感染監視資訊系統(TNIS 系統)2018 年 第 4 季 監視報告. 2018: 台灣院內感染監視資訊系統(TNIS 系統).
    5. Pinholt, M., et al., Incidence, clinical characteristics and 30-day mortality of enterococcal bacteraemia in Denmark 2006-2009: a population-based cohort study. Clin Microbiol Infect, 2014. 20(2): p. 145-51.
    6. 衛生福利部疾病管制署, 台灣院內感染監視資訊系統(TNIS 系統)2019 年 第 3 季 監視報告. 2019: 台灣院內感染監視資訊系統(TNIS 系統).
    7. 王振泰 and 楊采菱, 台灣腸球菌臨床流行病學之演變與現況, in 感染控制雜誌. 2014.
    8. Chou, C.H., et al., Emergence of vancomycin-resistant Enterococcus bloodstream infections in southern Taiwan. J Microbiol Immunol Infect, 2012. 45(3): p. 221-7.
    9. Billington, E.O., et al., Incidence, risk factors, and outcomes for Enterococcus spp. blood stream infections: a population-based study. Int J Infect Dis, 2014. 26: p. 76-82.
    10. Mahon, C.R., D.C. Lehman, and G. Manuselis, Textbook of Diagnostic Microbiology (5th ed.). 2014: New York: Saunders.
    11. Bloodstream Infection Event (Central Line-Associated Bloodstream Infection and Non-central Line Associated Bloodstream Infection), C.f.D.C.a.P. (CDC), Editor. 2020.
    12. Horan, T.C., M. Andrus, and M.A. Dudeck, CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control, 2008. 36(5): p. 309-32.
    13. EN, V., et al., Determinants of vancomycin resistance and mortality rates in enterococcal bacteremia. a prospective multicenter study. 2001.
    14. Zhang, Y., et al., Incidence, clinical characteristics, and outcomes of nosocomial Enterococcus spp. bloodstream infections in a tertiary-care hospital in Beijing, China: a four-year retrospective study. Antimicrob Resist Infect Control, 2017. 6: p. 73.
    15. Tan, C.K., et al., Bacteremia caused by non-faecalis and non-faecium enterococcus species at a Medical center in Taiwan, 2000 to 2008. J Infect, 2010. 61(1): p. 34-43.
    16. Fraser, S.L., C.J. Donskey, and R.A. Salata. Enterococcal Infections Treatment & Management. 2018 Jul 30, 2018.
    17. Yim, J., J.R. Smith, and M.J. Rybak, Role of Combination Antimicrobial Therapy for Vancomycin-Resistant Enterococcus faecium Infections: Review of the Current Evidence. Pharmacotherapy, 2017. 37(5): p. 579-592.
    18. Jones, R.N., Prediction of enterococcal imipenem susceptibility using ampicillin or penicillin MICs: more evidence for a class concept. J Clin Microbiol, 2001. 39(10): p. 3810-1.
    19. Falagas, M.E., et al., Fosfomycin. Clinical Microbiology Reviews, 2016. 29(2): p. 321-347.
    20. Wm. Michael Dunne, J., BLOOD CULTURE A key investigation for diagnosis of bloodstream infections.
    21. Kollef, M.H., et al., Inadequate antimicrobial treatment of infections: a risk factor for hospital mortality among critically ill patients. Chest, 1999. 115(2): p. 462-74.
    22. Harbarth, S., et al., Inappropriate initial antimicrobial therapy and its effect on survival in a clinical trial of immunomodulating therapy for severe sepsis. Am J Med, 2003. 115(7): p. 529-35.
    23. Kang, C.I., et al., Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis, 2003. 37(6): p. 745-51.
    24. Lodise, T.P., et al., Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis, 2003. 36(11): p. 1418-23.
    25. Forrest, G.N., et al., Peptide nucleic acid fluorescence in situ hybridization-based identification of Candida albicans and its impact on mortality and antifungal therapy costs. J Clin Microbiol, 2006. 44(9): p. 3381-3.
    26. Lee, C.C., et al., Beneficial effects of early empirical administration of appropriate antimicrobials on survival and defervescence in adults with community-onset bacteremia. Crit Care, 2019. 23(1): p. 363.
    27. Yang, C.J., et al., The impact of inappropriate antibiotics on bacteremia patients in a community hospital in Taiwan: an emphasis on the impact of referral information for cases from a hospital affiliated nursing home. BMC Infect Dis, 2013. 13: p. 500.
    28. Suppli, M., et al., Mortality in enterococcal bloodstream infections increases with inappropriate antimicrobial therapy. Clin Microbiol Infect, 2011. 17(7): p. 1078-83.
    29. SM, B., et al., A nationwide, multicenter, case-control study comparing risk factors, treatment, and outcome for vancomycin-resistant and -susceptible enterococcal bacteremia. 2000.
    30. Lodise, T.P., et al., A systematic review of the association between delayed appropriate therapy and mortality among patients hospitalized with infections due to Klebsiella pneumoniae or Escherichia coli: how long is too long? BMC Infect Dis, 2018. 18(1): p. 625.
    31. Falcone, M., et al., Time to appropriate antibiotic therapy is a predictor of outcome in patients with bloodstream infection caused by KPC-producing Klebsiella pneumoniae. Crit Care, 2020. 24(1): p. 29.
    32. Seymour, C.W., et al., Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N Engl J Med, 2017. 376(23): p. 2235-2244.
    33. Lee, C.C., et al., Timing of appropriate empirical antimicrobial administration and outcome of adults with community-onset bacteremia. Crit Care, 2017. 21(1): p. 119.
    34. Cheah, A.L., et al., Enterococcal bacteraemia: factors influencing mortality, length of stay and costs of hospitalization. Clin Microbiol Infect, 2013. 19(4): p. E181-9.
    35. Lin, M.Y., R.A. Weinstein, and B. Hota, Delay of active antimicrobial therapy and mortality among patients with bacteremia: impact of severe neutropenia. Antimicrob Agents Chemother, 2008. 52(9): p. 3188-94.
    36. Levey, A.S., et al., Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int, 2005. 67(6): p. 2089-100.
    37. Khatib, R., et al., Enterococcus spp. in a single blood culture: bacteremia or contamination? Diagn Microbiol Infect Dis, 2017. 87(3): p. 289-290.
    38. Andersson, M., et al., Delay of appropriate antibiotic treatment is associated with high mortality in patients with community-onset sepsis in a Swedish setting. Eur J Clin Microbiol Infect Dis, 2019. 38(7): p. 1223-1234.
    39. Dargere, S., H. Cormier, and R. Verdon, Contaminants in blood cultures: importance, implications, interpretation and prevention. Clin Microbiol Infect, 2018. 24(9): p. 964-969.
    40. Friedman, N.D., et al., Health care--associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med, 2002. 137(10): p. 791-7.
    41. Havey, T.C., et al., Duration of antibiotic therapy for critically ill patients with bloodstream infections: A retrospective cohort study. Can J Infect Dis Med Microbiol., 2013. 24(3): 129–137.
    42. Singer, M., et al., The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Jama, 2016. 315(8): p. 801-10.
    43. Chow, J.W. and V.L. Yu, Combination antibiotic therapy versus monotherapy for gram-negative bacteraemia: a commentary. Int J Antimicrob Agents, 1999. 11(1): p. 7-12.
    44. Charlson, M.E., et al., A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis, 1987. 40(5): p. 373-83.
    45. Vaquero-Herrero, M.P., et al., The Pitt Bacteremia Score, Charlson Comorbidity Index and Chronic Disease Score are useful tools for the prediction of mortality in patients with Candida bloodstream infection. Mycoses, 2017. 60(10): p. 676-685.
    46. Robineau, O., et al., Management and outcome of bloodstream infections: a prospective survey in 121 French hospitals (SPA-BACT survey). Infect Drug Resist, 2018. 11: p. 1359-1368.
    47. Vincent, J.L., et al., Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on "sepsis-related problems" of the European Society of Intensive Care Medicine. Crit Care Med, 1998. 26(11): p. 1793-800.
    48. Ferreira, F.L., et al., Serial evaluation of the SOFA score to predict outcome in critically ill patients. Jama, 2001. 286(14): p. 1754-8.
    49. Sanz Carabaña, P., et al., [Mortality and prognostic factors in patients admitted with community-acquired bacteremia]. An Med Interna, 2006. 23(2): p. 66-72.
    50. Vaquero-Herrero, M.P., et al., The Pitt Bacteremia Score, Charlson Comorbidity Index and Chronic Disease Score are useful tools for the prediction of mortality in patients with Candida bloodstream infection. Mycoses, 2017. 60(10): p. 676-685.
    51. Henderson, H., et al., The Pitt Bacteremia Score Predicts Mortality in Nonbacteremic Infections. Clin Infect Dis, 2020. 70(9): p. 1826-1833.
    52. 林委正, 高雅慧, and 柯文謙, 血液培養污染之臨床衝擊及改善方法. 感染控制雜誌 ; 14卷6期 (2004 / 12 / 01) , P390 - 397.
    53. Uptodate

    下載圖示 校內:2025-08-10公開
    校外:2025-08-10公開
    QR CODE