| 研究生: |
黃政杰 Huang, Jheng-Jie |
|---|---|
| 論文名稱: |
鑄造Ti-7.5Mo合金熱處理後結構及性質研究 Study of heat treatment on structure and properties of cast Ti-7.5Mo alloy |
| 指導教授: |
陳瑾惠
Chern Lin, Jiin-Huey 朱建平 Ju, Chien-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 鈦鉬合金 、α |
| 外文關鍵詞: | Ti-Mo alloy, α |
| 相關次數: | 點閱:102 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗中,對於鑄造後為α"相的Ti-7.5Mo合金進行不同強化處理,主要目的為保持足夠延性而獲得最高的機械強度。實驗分成三個部份討論:第一部份為強化處理條件A。第二部份為強化處理條件B。第三部份為強化處理條件C。
均質處理條件下有最低降伏強度491MPa,最低彈性模數70GPa,拉伸強度887MPa,延性27%,結晶結構為α"相。強化處理條件B4有最高降伏強度1291MPa、最高拉伸強度1370MPa,彈性模數124GPa,但是延性只有1.1%,結晶結構為α'+β相。強化處理條件A3有最優異的機械性質組合,降伏強度973MPa、拉伸強度1133MPa、延性10.6%、彈性模數101GPa,結晶結構為α"相。
In this study, cast α" phase Ti-7.5Mo alloy processed different strengthening treatment, expect to maintain sufficient ductility and obtain the highest mechanical strength as the main purpose. The experiment is divided into three parts : The first part is strengthening treatment condition A. The second part is strengthening treatment condition B. The third part is strengthening treatment condition C.
Homogenizing treatment condition has the lowest yield strength 491MPa, the lowest elastic modulus 70GPa, tensile strength 887MPa, ductility 27% and crystal structure is α" phase. Strengthening treatment condition B4 has the highest yield strength 1291MPa, the highest tensile strength 1370MPa, elastic modulus 124GPa, but ductility only 1.1% and crystal structure is α'+β phase. Strengthening treatment condition A3 has outstanding combination of mechanical properties, yield strength 973MPa, tensile strength 1133MPa, ductility 10.6%, elastic modulus 101GPa and crystal structure is α" phase.
1.Bagariaskii IA., Nosova GI. and Tagunova TV., “Factors in the formation of metastable phase in titanium-based alloys [Engl. trans.]. Sov Phys Dokl”, 3,1014-8, 1959.
2.Blackburn MJ. and Williams JC., “Phase transformation in Ti-Mo and Ti-V alloys”, Trans Metal Soc AIME, 242:2461-9, 1968.
3.Fedotov SG., “Peculiarities of Changes in Elastic Properties of Ti Martensite”, Titanium Science and Technology, 2:871-81, 1973.
4.Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th Annual International Biomaterial Symposium, April 20-24, 1974.
5.Newman JR., Eylon D. and Throne JK., “Titanium and Titanium Alloys”, Metals Handbook 9th ed., Vol.15, ASM International, Metals Park, Ohio, 1985.
6.Davis R., “Martensitic transformations in Ti-Mo alloys”, Journal of materials science v14,P712-722, 1979. Newman JR, Eylon D and Throne JK. “Titanium and Titanium Alloys”, Metals Handbook 9th ed., Vol.15, ASM International, Metals Park, Ohio, 1985.
7.Murray JL., “Binary alloy phase diagrams, Vol. 3” , edited by massalski TB, Murray JL, Bennett LH and Baker H. American Society for Metals, Park, Ohio: ASM, pp. 1637-1641, 1986.
8.John L.Walter, Melvin R. Jackson, Chester T. Sims, “ALLOYING”, ASM International, Metals Park, Oh44073, 1988.
9.Donachie Jr. Matthew J., “Titanium A Technical Guide”, ASM International, Metals Park, Oh44073, 1989.
10.Bania PJ., “Beta titanium alloys and their role in the titanium industry”, In: Eylon D., Boyer R., Koss D., editors. Beta titanium alloys in the 1990's. Warrendale, PA: TMS, p. 3-14, 1993.
11.Smith WF., “Structure and Properties of Engineering Alloys”, McGraw-Hill, Inc., USA, 433-484, 1993.
12.Boyer R., Welsch G., and Collings EW., “Titanium Alloys”, Materials Properties Handbook , ASM International, Materials Park, OH, 1994.
13.W.F. Ho, C.P. Ju, J.H. Chern Lin, “Structure and properties of cast binary Ti-Mo alloys”, Biomaterials, 20:2115-22, 1999.
14.Furuhara T., Maki T., Makino T., “Microstructure control by thermomechanical processing in β-Ti-15-3 alloy”, Journal of Materials Processing Technology, 117, 318-323, 2001.
15.Y.L. Zhou, Niinomi M., Akahori T., “Decomposition of matensite α" during aging treatment and resulting mechanical properties of Ti-Ta alloys”, Materials Science and Engineering A, 371, 283-290, 2004.
16.Daisuke Kuroda T., Hironori Kawasaki, Akiko Yamamoto, Sachiko Hiromoto, Takao Hanawa, “Mechanical properties and microstructures of new Ti–Fe–Ta and Ti–Fe–Ta–Zr system alloys”, Materials Science and Engineering C, 2005.
17.Toshikazu Akahori, Mitsuo Niinomi, Hisao Fukui, Michiharu Ogawa, Hiroyuki Toda, “Improvement in fatigue characteristics of newly developed
beta type titanium alloy for biomedical applications by thermo-mechanical treatments”, Materials Science and Engineering C, 2005.
18.Y.L. Hao, S.J. Sun, S.Y. Zheng, C.Y. Yang, “Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications”, Acta Biomaterialia, 2007.
19.Qinghua Guo, Yongzhong Zhan, Honglou Mo, Guanghua Zhang, “Aging response of the Ti-Nb system biomaterials with β-stabilizing elements”, Materials and Design, 2010.
校內:立即公開