| 研究生: |
陳玟瑾 Chen, Wen-Chin |
|---|---|
| 論文名稱: |
多孔性陽極氧化鋁包覆奈米銀粒子之螢光現象 Fluorescence Responses of Porous Anodic Aluminum Oxide Films with Silver Nanoparticles |
| 指導教授: |
崔祥辰
Chui, Hsiang-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 陽極氧化鋁 、奈米銀粒子陣列 、全反射螢光顯微鏡 、區域表面電漿共振 |
| 外文關鍵詞: | Anodic aluminum oxide, Ag nanoparticles array, total internal reflection fluorescence microscopy, localized surface plasmon resonance |
| 相關次數: | 點閱:121 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此,為激發奈米粒子陣列結構的表面電漿子,我們使用全反射的方式來進行,經由電場區域性的強化,增強了奈米粒子陣列上螢分子的訊號。在製程中利用穩定可控的變因條件,改變其尺寸與間距間的大小,也嘗試使用不同的螢光劑來探其之間的差異和螢光訊號增強之影響。
傳統的全反射螢光顯微鏡,是利用入射光源大於臨界角度時發生全反射,在其穿透介質中產生的一消逝波來藉以激發在逝波範圍內(約數百奈米)的螢光分子並激發出欲觀察之訊號。因此解析度可達至奈米等級的效果,且螢光影像具有非常低的雜訊背景。
在應用上,擷取於細胞體的動態影像時,其螢光訊號仍須被增強。故以降低偵測極限來得到更強的螢光訊號,於此我們結合TIRFM與奈米銀粒子陣列的氧化鋁薄膜來作為量測螢光分子的基板,藉由消逝波激發的局域性表面電漿共振來增強螢光分子的訊號。
In this thesis, we produce the anodic aluminum oxide (AAO) film which has highly order nanopores inserted by Ag nanoparticels with high filling ratio using the electrochemical deposition with a stable DC voltage. The absorption spectra of Ag/AAO films are measured, and the visible absorption peak, 405 nm, is observed. The major reason of absorption peak is local surface plasmon induced by the Ag nanoparticles on the surface of Ag/AAO film. The surface plasmons (SPs) are also excited by Ag nanoparticles by total internal refection fluorescence (TIRF) technique. The fluorescence signals can be enhanced by the localized electric field. In our experimental processes, the sizes and pitches of AAO samples can be controlled under a stable experimental condition. Therefore, their optical properties are suitable to investigate the fluorescence signals with different fluorescence reagents.
The fluorescence signals caused by the evanescent wave are measured by the traditional total internal reflection fluorescence microscope (TIRFM) when the angle of incident light is more than the critical angle. The evanescent range is about several hundred nanometers which reach nano-scale resolution, and the fluorescence images have low background noise.
In our samples applied on lived cells, we also need to enhance the fluorescence images. When localized surface plasmon resonance (LSPR) excited by evanescent wave, the detection limit decreases and the fluorescence signals are enhanced by the Ag/AAO films using the total internal reflection fluorescence microscope (TIRFM) combined.
[1] A. Schonle and S. W. Hell, “heating by absorption in the focus of an objective lens”, Opt. Lett. 23, 325-327 ( 1998 )
[2] C. Bohren and D. Huffman.,“Absorption and Scattering of Light by Small Particles”, ( Wiley, New York, 1983 )
[3] H. Masuda and K. Nishio, "Synthesis and Applications of Highly Ordered Anodic Porous Alumina " Self:organized Nano-scale Materials, Nanostructure, Chap. 9, Science and Technology series editors David J. Lockwood, Springer, 2006
[4] Shoso Shingubara, "Fabrication of nan ornate rials using porous alumina templates," Journal of Nanoparticle Research 5: pp. 17-30,2003.
[5] G. E. Thompson, "Porous anodic alumina: fabrication, characterization and applications," Thin Solid Films 297 ( 1997 ) pp. 192-201.
[6] H. Masuda and K. Fukuda, "Ordered Metal Nanohole Array Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina," Science Vol. 268, pp. 1466-1468, 9 June 1995
[7] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao and T. Tamamura, "Highly ordered nanochannel-array architecture in anodic alumina," Appl. Phys. Lett. 71 ( 19 ), 10 November 1997
[8] S.-Z. Chu, K. Wada, S. Inoue, M. Isogai and A. Yasumori, "Fabrication of Ideally Ordered Nanoporous Alumina Films and Integrated Alumina Nanotube Arrays by High-Field Anodization," Advanced Materials 17 ( 2005 ) pp. 2115-2119
[9] S. Ono, M. Saito, H. Asoh, "Self:ordering of anodic porous alumina formed in organic acid electrolytes," Electrochimica Acta 51 ( 2005 ) pp. 827-833
[10] W. Lee, R. Ji, U. Gosele and K. Nielsch, "Fast fabrication of long-range ordered porous alumina membranes by hard Anodization," Nature Materials vol. 5, pp. 741-747 Sep. 2006
[11] W. Cheng, M. Steinhart,U. Gosele and R. B. Wehrspohn, "Tree-like alumina nanopores generated in a non-steady-state anodization," Journal of Materials Chemistry, 17 ( 2007 ) pp. 3493-3495
[12] K. L. Kelly, E. Coronado, L. L. Zhao, and C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment”, J. Phys. Chem. B 107, 668-677 ( 2003 )
[13] T. Hirschfeld, “Optical microscopic observation of single small molecules”, Appl. Opt. 15, 2965 ( 1976 )
[14] C. Wilkerson, P. Goodwin, W. Ambrose, J. Martin, and R. Keller, “Detection and lifetime measurement of single molecules in flowing sample streams by lase-induced fluorescence”, Appl. Phys. Lett. 62, 2030 ( 1993 )
[15] H. Lu and X. Xie, “Single-molecule spectral fluctuations at room temperature”, Nature, 385, 143 ( 1997 )
[16] J. Trautman, J. Macklin, L. Brus, and E. Betzig, “Near-field spectroscopic of single molecules at room temperature”, Nature, 369 , 6475 (1994)
[17] K. Aslan, J. R. Lakowicz, C. D. Geddes, “Plasmon light scattering in biology and medicine: new sensing approaches, visions perspectives”, Curr. Opin. Chem. Biol. 9, 538 ( 2005 )
[18] K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz,C. D. Geddes, “Metal-enhanced fluorescence: an emerging tool in biotechnology” Curr. Opin. Chem. Biol. 16, 55 ( 2005 )
[19] J. Malicka, I. Gryczynski, J. R. Lakowicz, “DNA hybridization assays using metal-enhanced fluorescence” , Biochem. Biophys. Res.Commun. 306, 213, ( 2003 )
[20] E. Matveeva, Z. Gryczynski, J. Malicka, I. Gryczynski, J. R. Lakowicz, “Metal-enhanced fluorescence immunoassays using total internal reflection and silver island-coated surfaces”, Anal. Biochem. 334, 303 ( 2004 )
[21] M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, J. R. Lakowicz, “Aluminum Nanoparticles as Substrates for Metal-Enhanced Fluorescence in the Ultraviolet for the Label-Free Detection of Biomolecules”, Anal.Chem. 81, 1397 ( 2009 )
[22] R. H. Ritchie, “plasma losses by fast electrons in the thin films,” Phys. Rev. 106, 874-881 ( 1957 )
[23] C. J. Powell and J. B. Swan, “Effect of oxidation on the characteristics loss spectra of aluminum and magnesium,” Phys. Rev. 118, 640-643 ( 1960 )
[24] H. Raether, “Surface Plasmons”, Springer ( 1988 ).
[25] A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons”, Phys. Reports 408, 131 ( 2005 ).
[26] M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Selected Topics Quantum Electron. 8, 839 ( 2002 ).
[27] S. Kawata, M. Ohtsu, and M. Irie ed. “Nano-Optics” ( Springer, 2002 ).
[28] P. N. Prasad, “Nanophotonics” ( Wiley, Hoboken, NJ, 2004 ).
[29] R. F. Wallis and G. I. Stegeman, “Electromagnetic Surface Excitations”, Springer-Verlag ( 1985 ).
[30] H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings”, Springer-Verlag ( 1988 ).
[31] C. Kittel, “Introduction to solid state Physics,” second end. ( Wiley, New York, 1956 ).
[32] J. A. Porto, F. J. Garcia-Vidal, and J.B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys Rev Lett 83, 2845-2848 ( 1999 )
[33] W. C. Tan, T. W. Preist, J. R, Sambles, and N. P.
[34] 邱國斌 and 蔡定平, "金屬表面電漿簡介," 物理雙月刊 28, 472-485 ( 2006 )
[35] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review”, Sens. Actuators B 54, 3 ( 1999 )
[36] Shu-Fang Cheng and Lai-Kwan Chau, “Colloidal gold-modified optical fiber for chemical and biochemical sensing”, Anal. Chem. 75, 16 ( 2003 )
[37] T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C Schatz, and R. P. Van Duyne ,“Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles”, J. Phys. Chem. B 103, 9846 ( 1999 )
[38] A. C Templeton, J. J. Pietron, R. W. Murray, and P. J. Mulvaney ,”Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters”, Phys. Chem. B 104, 564 ( 2000 )
[39] T. Okamoto, I. Yamaguchi, and T. Kobayashi, “Local plasmon sensor with gold colloid monolayers deposited upon glass substrates”, Opt. Lett. 25, 372 ( 2000 )
[40] N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface”, Anal. Chem. 74, 504 ( 2002 )
[ 41 ] Xiangjiang Liu, Maria Knauer, Natalia P. Ivleva, Reinhard Niessner, and Christoph Haisch , “Synthesis of core-shell surface-enhanced raman tags for bioimaging”, Anal. Chem. 82, 441 ( 2010 )
[42] R. P. Van Duyne, J. C. Hulteen, D. A. Treichel, and J. Chern ,“Atomic force microscopy and surface-enhanced raman spectroscopy: ag island films and ag film over polymer nanosphere surfaces supported on glass”, Phys. 99, 2101 ( 1993 )
[43] P. F. Liao, and M. B. Stern ,“Surface-enhanced Raman scattering on gold and aluminum particle arrays”, Optics Letters 7, 483 (1982)
[44] A. Taflove and S. C. Hagness., Computational Electrodynamics : The Finite-Difference Time-Domain Method, third ed. ( Artech House, Boston-London, 2005 )
[45] J. Kottmann and O. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express 8 ( 2001 )
[46] J. Kottmann and O. Martin,. “Retardation-induced plasmon resonances in coupled nanoparticles,” Optics Letters 26, 1096-1098 ( 2001 )
[47]M. Y. Ng and W. C. Liu, in “Fifth Asia-Pacific Conference on Near-Field Optics,” ( 2005 )
[48] 吳民耀 and 劉威志, “表面電漿子理論與模擬,” 物理雙月刊 28, 486-496 ( 2006 )
[49] G. D. Bengough and J. M. Stuart, Britist patent no.223994 ( 1923 )
[50] H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl Phys 2 37, L1340-L1342 ( 1998 )
[51] S. J. Hurst, E. K. Payne, L. D. Qin, and C. A. Mirkin, “Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods,” Angew Chem Int Edit 45, 2672-2692 ( 2006 )
[52] S. Shingubara, “Fabrication of Nanomaterials Using Porous Alumina Templates,” Journal of Nanoparticle Research 5, 17-30 ( 2003 )
[53] H.Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T. N. Rao, and A. Fujishima, “Synthesis of Well-Aligned Diamond Nanocylinders,” Adv Mater 13, 247-249 ( 2001 )
[54] A. Saedi and M. Ghorbani, “Electrodeposition of Ni-Fe-Co alloy nanowire in modified AAO template,” Mater Chem Phys 91, 417-423 ( 2005 )
[55] A. P. Li, F. Muller, A. Birner, K.Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50—420 nm interpore distance formed by self-organization in anodic alumina,” Journal of Applied Physics 84, 6023-6026 ( 1998 )
[56] H. Masuda, K. Yada, and A. Osaka, “Self-Ordering of Cell Configuration of Anodic Porous Alumina with Large-Size Pores in Phosphoric Acid Solution,” Jpn. J.
[57] F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chemistry of Materials 10, 2470-2480 ( 1998 )
[58] K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gosele, “Self-ordering regimes of porous alumina: The 10% porosity rule,” Nano Lett 2, 677-680 ( 2002 )
[59] S. Z. Chu, K. Wada, S. Inoue, M. Isogai, and A. Yasumori, “Fabrication of ideally ordered nanoporous alumina films and integrated alumina nanotubuled arrays by high-field anodization,” Adv Mater 17, 2115 ( 2005 )
[60] Kathrin Schwirn, Woo Lee, Reinald Hillebrand, Martin Steinhart, Kornelius Nielsch, and Ulrich Gösele “Self-Ordered Anodic Aluminum Oxide Formed by H2SO4 Hard Anodization,” ASC NANO, vol 2, no 2, 302-310 ( 2008 )
[61] H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution," Jpn J Appl Phys 2 37, L1340-L1342 ( 1998 )
[62] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50--420 nm interpore distance formed by self-organization in anodic alumina," Journal of Applied Physics 84, 6023-6026 ( 1998 )
[63] Shingubara, Shoso; Okino, Osamu; Sayama, Yasuyuki; Sakaue, Hiroyuki; Takahagi, Takayuki “Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum,” Japanese Journal of Applied Physics, vol. 36, issue Part 1, No. 12B, pp. 7791-7795 ( 1997 )
[64] O. Jessensky, F. Muller, and U. Go¨sele “Self-organized formation of 33 hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett., Vol. 72, No. 10, 9 March 1998
[65] V. P. Parkhutik and V. I. Shershulsky, “Theoretical Moddeling of porous Oxide-Growth on Aluminum, ” J Phys D Appl Phys 25, 1258-1263 ( 1992 )
[66] Diggle, J.W.; Downie, T. C.; Goulding, C.W. Chem. Rev. 1969, 69, 365.
[67] Despic, A.; Parkhutik, V. P. Modern Aspects of Electrochemistry; Plenum Press: New York, 1989; Vol. 23, pp 401-458.
[68] Parkhutik, V. P.; Shershulsky, V. I. J. Phys. D: Appl. Phys. 1992, 25, 1258
[69] Thompson, G. E. Thin Solid Films 1997, 297, 192.
[70] Zhu, X. F.; Liu, L.; Song, Y.; Jia, H.; Yu, H.; Xiao, X.; Yang, X. L. Monatsh. Chem. 2008, 139, 999
[71] Thompson, G. E.;Wood, G. C. Nature 1981, 290, 230.
[72] Albella, J. M.; Montero, I.; Martinez-Duart, J. M. Electrochim. Acta 1987, 32, 255
[73] Zhu, X. F.; Song, Y.; Liu, L.;Wang, C.; Zheng, J.; Jia, H.; Wang, X. Nanotechnology 2009, 20, 475303
[74] K. Nielsch, F. Müller, A. P. Li, U. Gösele, Adv. Mater. 12 ( 2000 ) 582
[75] J. Liang, H. Chik, J. Xu, IEEE J. Sel. Top. Quantum Electron. 8 ( 5 ) ( 2002 ) 998
[76] Dr. rer. nat., “Electrochemical deposition of Cobalt, Nickel-Cobalt, Nickel-Copper and Zinc-Nickel nanostructured materials on aluminum by template self-organization”, 2007
[77] Chun-Guey Wu Æ Hu Leng Lin Æ Nai-Ling Shau, “Magnetic nanowires via template electrodeposition,” J Solid State Electrochem, 10,198–202 (2006)
[78] A. Hards, “The combined AFM manipulation and fluorescence imaging of single 59 DNA molecules” Ph.D. Thesis, Department Chemistry Ludwig Maximilian University Munich, ( 2004 )
[79] A. Hards, “The combined AFM manipulation and fluorescence imaging of single DNA molecules” Ph.D. Thesis, Department Chemistry Ludwig Maximilian University Munich, ( 2004 )
[80] Principles Of Instrumental Analysis F.James Holler, Douglas A. Skoog & Stanley R. Crouch 2006
[81] M. A. Behlke, L. Huang, L. Bogh, S. Rose, and E. J. Devor, “Fluorescence and Fluorescence Applications”, Integrated DNA Technologies.
[82] R. Y. He, G. L. Chang, H. L. Wu, C. H. Lin, K. C. Chiu, Y. D. Su, and S. J. Chen, “Enhanced live cell membrane imaging using surface plasmon-enhanced total internal reflection fluorescence microscopy” Optics Express, 14, 9307-9316 ( 2006 )
[83] Su-Hyun Gong, Arnaud Stolz, Gi-Hwan Myeong, Elhadj Dogheche, Anisha Gokarna, Sang-Wan Ryu, Didier Decoster, and Yong-Hoon Cho, “Effect of varying pore size of AAO films on refractive index and birefringence measured by prism coupling technique” OPTICS LETTERS / Vol. 36, No. 21 / November 1, 2011
[84] http://refractiveindex.info/?group=METALS&material=Silver
[85] www.olympusmicro.com/primer/java/tirf/evaintensity
校內:2018-09-11公開