簡易檢索 / 詳目顯示

研究生: 謝岳志
Hsieh, Yueh-Chih
論文名稱: 分散劑對氧化鋯漿料流變性質之影響
Effects of Dispersants on Rheological Behaviors of Zirconia Suspensions
指導教授: 黃啟祥
Hwang, Chii-Shyang
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 93
中文關鍵詞: 氧化鋯分散劑流變行為
外文關鍵詞: rheological behavior, dispersant, zirconia
相關次數: 點閱:157下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 穩定化之氧化鋯因具有甚低的熱導率,與金屬相近的熱膨脹係數等特性而廣被應用於坩堝、噴嘴、墊片、絕熱材料,以及熱屏障的塗附層。為形成塗附層,須先利用分散劑製備氧化鋯漿料,則漿料之流變性質便成為首要瞭解的研究標的。本研究之目的旨在檢討pH值及常見的分散劑對氧化鋯漿料流變行為的影響。
    本研究是以球磨之方式,將起始氧化鋯粉末原料細化,再調整漿料之pH值或添加不同分散劑,探討其流變性質、濁度及ζ電位之間的關係。研究結果顯示,起始粉末原料ZrO2-1(monoclinic)所調配之漿料僅在添加HNO3後,在pH值介於約2.5~4.5時有較佳的分散現象;ZrO2-2(tetragonal)所調配之漿料,在添加0.1wt%陽離子型分散劑Poly(ethyleneimine)時,有較佳的分散性。而其他兩種陰離子型分散劑D305及Darvan 7在各添加0.1、0.5、1.0 wt%時,皆會降低對ZrO2-1及ZrO2-2懸浮液中粉體之ζ電位,進而造成其分散性不良之影響。

    Stabilized zirconia is applied to the crucibles, jets, spacers, refractory materials and thermal barrier coatings because the thermal conductivity coefficient of zirconia is quite low, and the thermal expansion coefficient of zirconia is near to that of metals. In order to form thermal barrier coatings, it is necessary to prepare the zirconia suspensions using dispersants. Therefore, understanding the rheological behaviors of suspensions becomes the most important research motive. In this study, effects of different dispersants and pH value on rheological behaviors of zirconia suspensions were investigated.
    The particle sizes of zirconia raw materials were reduced by ball milling, and the suspensions were prepared by adjusting pH value or adding various dispersants. The relationships among rheological behaviors, turbidity, and ζ-potential were discussed. The ZrO2-1(monoclinic) suspension showed the better dispersive state in the pH range of 2.5~4.5 after adding HNO3. The ZrO2-2(tetragonal) suspension showed the better dispersive state after adding 0.1wt% poly(ethyleneimine). The addition of 0.1, 0.5, 1.0wt% D305 or Darvan 7 dispersant caused a reduction in the zeta potential of ZrO2-1 and ZrO2-2 because of the worse dispersive state of these suspensions as mentioned.

    中文摘要 Ⅰ 英文摘要 Ⅱ 表目錄 Ⅷ 圖目錄 Ⅸ 第一章 緒論 1 1-1 前言 1 1-2 研究目的 1 第二章 相關文獻回顧 3 2-1 關於氧化鋯 3 2-1-1 氧化鋯的基本認識 3 2-1-2 氧化鋯的分類 4 2-2 膠體懸浮液之凝聚與分散 6 2-3常見的分散劑種類 13 2-4 膠體懸浮液之流變性質 15 2-5 氧化鋯之表面改質 19 第三章 實驗方法與步驟 22 3-1 原料 22 3-2 起始粉體性質分析 24 3-2-1 X-ray 繞射(X-ray Diffractometer, XRD)分析 24 3-2-2 微觀結構觀察 26 3-3 實驗流程 28 3-3-1 實驗流程圖 28 3-3-2 研磨試驗 29 3-3-3 粒徑分佈分析 29 3-3-4 漿料之調配 32 3-3-5 流變性質測定 32 3-3-6 濁度測定 33 3-3-7 ζ電位測定 33 第四章 結果與討論 34 4-1 pH值對懸浮液流變行為的影響 34 4-1-1 ZrO2-1懸浮液 34 4-1-2 ZrO2-2懸浮液 39 4-2 分散劑對懸浮液流變行為的影響 45 4-2-1 D305對懸浮液的影響 45 4-2-2 Darvan 7對懸浮液的影響 58 4-2-3 PEI對懸浮液的影響 71 第五章 結論 89 參考資料 90 表目錄 表2-1 氧化鋯的主要晶相結構資料。 3 表2-2 氧化鋯粒子表面改質之相關文獻。 21 表3-1 起始原料氧化鋯粉末之性質。 23 表3-2 D305、Darvan 7及PEI之性質。 23 圖目錄 圖2-1 純氧化鋯相圖。 5 圖2-2 氧化鋯的結晶構造。 5 圖2-3 電雙層結構示意圖。 9 圖2-4 聚合物在微粒表面之吸附:(a)高分子聚合物吸附於微粒表面之構形圖,(b)聚合物吸附於數個微粒表面,藉架橋作用產生凝聚。 12 圖2-5 膠體系統之靜位能變化。 14 圖2-6 液體中介面藥劑的分散作用 16 圖2-7 各種流體之切應力與切變率之關係。 18 圖3-1 起始粉末之XRD繞射圖:(a)ZrO2-1(b)ZrO2-2。 25 圖3-2 起始粉末之微觀結構:(a)ZrO2-1(b)ZrO2-2。 27 圖3-3 ZrO2-1粉體球磨前與球磨後之粒度分佈。 30 圖3-4 ZrO2-2粉體球磨前與球磨後之粒度分佈。 31 圖4-1 ZrO2-1懸浮液(30 vol%)在不同的pH值下切應力與切變之關係。 35 圖4-2 ZrO2-1懸浮液(30 vol%)在不同的pH值下黏度與切變率之關係。 36 圖4-3 ZrO2-1懸浮液(30 vol%)在11.5 s-1切變率下,黏度與pH之關係。 37 圖4-4 ZrO2-1 之ζ電位與pH值之關係。 38 圖4-5 ZrO2-2懸浮液(20 vol%)在不同的pH值下切應力與切變率之關係。 40 圖4-6 ZrO2-2懸浮液(20 vol%)在不同的pH值下黏度與切變率之關係。 41 圖4-7 ZrO2-2懸浮液(20 vol%)在11.5 s-1切變率下,黏度與pH之關係。 43 圖4-8 ZrO2-2 之ζ電位與pH值之關係。 44 圖4-9 氧化鋯微粒與水藉由氫鍵產生橋聯(bridging)作用之圖示。 46 圖4-10 ZrO2-1懸浮液(10 vol%)在不同的D305添加量,其切應力與切變率之關係。 46 圖4-11 ZrO2-1懸浮液(10 vol%)在不同的D305添加量,其黏度與切變率之關係。 47 圖4-12 ZrO2-1懸浮液(10 vol%)在76.8 s-1切變率下,其黏度與D305添加量之關係。 49 圖4-13 ZrO2-1之濁度與D305添加量之關係。 50 圖4-14 ZrO2-1之ζ電位與D305添加量之關係。 51 圖4-15 ZrO2-2懸浮液(10 vol%)在不同的D305添加量,其切應力與切變率之關係。 53 圖4-16 ZrO2-2懸浮液(10 vol%)在不同的D305添加量,其黏度與切變率之關係。 54 圖4-17 ZrO2-2懸浮液(10 vol%)在76.8 s-1切變率下,其黏度與D305添加量之關係。 55 圖4-18 ZrO2-2之濁度與D305添加量之關係。 56 圖4-19 ZrO2-2之ζ電位與D305添加量之關係。 57 圖4-20 ZrO2-1懸浮液(10 vol%)在不同的Darvan 7添加量,其切應力與切變率之關係。 59 圖4-21 ZrO2-1懸浮液(10 vol%)在不同的Darvan 7添加量,其黏度與切變率之關係。 60 圖4-22 ZrO2-1懸浮液(10 vol%)在76.8 s-1切變率下,其黏度與Darvan7添加量之關係。 62 圖4-23 ZrO2-1之濁度與Darvan 7添加量之關係。 63 圖4-24 ZrO2-1之ζ電位與Darvan 7添加量之關係。 64 圖4-25 ZrO2-2懸浮液(10 vol%)在不同的Darvan 7添加量,其切應力與切變率之關係。 66 圖4-26 ZrO2-2懸浮液(10 vol%)在不同的Darvan 7添加量,其黏度與切變率之關係。 67 圖4-27 ZrO2-2懸浮液(10 vol%)在76.8 s-1切變率下,其黏度與Darvan7添加量之關係。 68 圖4-28 ZrO2-2之濁度與Darvan 7添加量之關係。 69 圖4-29 ZrO2-2之ζ電位與Darvan 7添加量之關係。 70 圖4-30 ZrO2-1懸浮液(10 vol%)在不同的PEI添加量,其切應力與切變率之關係。 72 圖4-31 ZrO2-1懸浮液(10 vol%)在不同的PEI添加量,其黏度與切變率之關係。 73 圖4-32 ZrO2-1懸浮液(10 vol%)在76.8 s-1切變率下,其黏度與PEI添加量之關係。 74 圖4-33 ZrO2-1之濁度與PEI添加量之關係。 76 圖4-34 ZrO2-1之ζ電位與PEI添加量之關係。 77 圖4-35 ZrO2-2懸浮液(10 vol%)在不同的PEI添加量,其切應力與切變率之關係。 78 圖4-36 ZrO2-2懸浮液(10 vol%)在不同的PEI添加量,其黏度與切變率之關係。 79 圖4-37 ZrO2-2懸浮液(10 vol%)在76.8 s-1切變率下,其黏度與PEI添加量之關係。 81 圖4-38 ZrO2-2(10 vol%)之濁度與PEI添加量之關係。 82 圖4-39 ZrO2-2懸浮液(10 vol%)在不同的PEI添加量,其切應力與切變率之關係。 83 圖4-40 ZrO2-2懸浮液(10 vol%)在不同的PEI添加量,其黏度與切變率之關係。 84 圖4-41 ZrO2-2(30 vol%)之濁度與PEI添加量之關係。 85 圖4-42 ZrO2-2之ζ電位與PEI添加量之關係。 86 圖4-43 三種不同分散劑之空白實驗,其黏度與切變率之關係。 88

    1. Roy, P., Bertrand, G., and Coddet, C., , “Spray drying and sintering of zirconia based hollow powders,” Powder Tech., 157, 20-26 (2005).
    2. Mewis, J., “Rheology of Concentrated Dispersions,” Adv. Colloid Interface Sci., 6, 179-220 (1976).
    3. Green, D. J., Hannink, R. H. J. and Swain M. V., “Transformation Toughening of Ceramics,” CRC Press, Inc. (1989).
    4. Ruh, R. and Rockett, T. J., “Proposed Phase Diagram for the System ZrO2,” J. Am. Ceram. Soc., 53, 360 (1970).
    5. Heuer, H., “Transformation Toughening in ZrO2-Containing Ceramics,” J. Am. Ceram. Soc., 70, 689 (1987).
    6. Heuer, A. H., “Stability of Tetragonal ZrO2 Particles in Ceramic Matrices,” J. Am. Ceram. Soc., 65, 642-650 (1982).
    7. Srinivasan, S. Scattergood, R. O. Pfeiffer, G. Sparks, R. G. and Paesler, M. A., “Low Temperature Treatment of Transformation Toughened Partially Stabilized Magnesia-Doped Zirconia,” J. Am. Ceram. Soc., 73, 1421-1424 (1990).
    8. Masaki, T., “Mechanical Properties of Toughened ZrO2-Y2O3 Ceramics,” J. Am. Ceram. Soc., 69, 638-640 (1986).
    9. Moguchi, K. and Fujita, M., “Tensile Strength of Yttria-Stabilized Tetragonal Zirconia Polycrystals,” J. Am. Ceram. Soc., 72, 1305-1307 (1989).
    10. Overbeck, J. Th. G., “Interparticle Forces in Colloid Science,” Powder Tech., 37, 195-208 (1984).
    11. Duncan J Shaw, “Introduction to Colloid and Surface Chemistry,” Butterworth Heinemann, 4thed (1992).
    12. Napper, D. H., “Steric Stabilization,” J. Interface Sci. 58, 390-407 (1977).
    13. Napper, D. H., “Polymeric Stabilization of Colloidal Dispersions,” Academic Press, 18-30 (1983).
    14. Feigin, R. I. and Napper, D. H., “Depletion Stabilization and Depletion Flocculation,” J. Colloid Interface Sci., 75, 525-541 (1980).
    15. Howard, G. L., Hudson, F. L., and West, J., “Water-Soluble Polymer as Retention Aids in a Model Papermaking System I. Polycrylamides,” J. Applied Polymer Sci., 21, 1-16 (1977).
    16. Chang, H. L., “Polymer Flooding Technology-Yesterday, Today and Tomorrow,” J. Petroleum Tech., 30, 1113-1128 (1987).
    17. Vincent, B., “The Effect of Absorbed Polymers on Dispersion Stability,” Adv. Interface Sci. 4, 193-277 (1974).
    18. Myers, D., “Surface, Interfaces, and Colloids,” Second Edition, Wiley-VCH, 244-248 (1999).
    19. Pugh, R. J. and Lennart Bergstrom, “Surface and Colloid Chemistry in Advanced Ceramics Processing,” Marcel Dekker (1994)
    20. 高濂、孫靜、楊開橋,“奈米粉體的分散及表面改性”,五南圖書,民國九十四年。
    21. 趙承琛,“界面科學基礎”,復文書局,民國七十六年。
    22. James, S. Reed., “Principles of Ceramics Processing,” Second Edition, Wiley-Interscience, 277-305 (1995).
    23. Hunter, R. J., “Introduction to Modern Colloid Science,” Oxford Science (1993).
    24. Nguyen Quoc Dzuy and D. V. Boger, “Yield Stress Measurement for Concentrated Suspensions,” Journal of Rheology, 27, 321-349 (1983).
    25. 李文鐘,“選礦學”,世界書局,民國五十五年。
    26. Tang, F. Q., Huang, X. X., Zhang, Y. F. and Guo, J. K., “Effect of Dispersants on Surface Chemical Properties of Nano-zirconia Suspensions”, Ceram. Int., 26, 93-97 (2000).
    27. Wang, J. and Gao, L., “Surface and Electrokinetic Properties of Y-TZP Suspensions Stabilized by Polyelectrolytes”, Ceram.Int., 26, 187-191 (2000).
    28. Wang, J. and Gao, L., “Deflocculation Control of Polyelectrolyte- adsorbed ZrO2 Suspensions”, J. Mater. Sci. Let., 18, 1891-1893 (1999).
    29. Shojai, F., Pettersson, A. B. A., Mäntylä, T. and Rosenholm, J. B., “Electrostatic and Electrosteric Stabilization of Aqueous Slips of 3Y-ZrO2 Powder”, J. Eur. Ceram. Soc., 20, 277-283 (2000).
    30. Tan, Q. Q., Zhang, Z. T., Tang, Z. L., Luo, S. H. and Fang, K. M., “Influence of Polyelectrolyte Dispersant on Slip Preparation of Nano-sized Tetragonal Polycrystals Zirconia for Aqueous-gel-tape- casting Process,” Mater. Chem. Phys., 80, 615-619 (2003).
    31. Hashiba, M., Okamoto, H., Nurishi, Y. and Hiramatsu, K., “Dispersion of ZrO2 Particles in Aqueous Suspension by Ammonium Polyacrylate,” J. Mater. Sci., 24, 873-876 (1989).
    32. Mahdjoub, H, Roy, P, Filiatre, C, Bertrand, G and Coddet, C., “The Effect of the Slurry Formulation upon the Morphology of Spray-dried Yttria Stabilised Zirconia Particles,” J. Europ. Ceram. Soc., 23 1637-1648 (2003).
    33. Sun, J., Gao, L. and Guo, J., “Influence of the initial pH on the adsorption behaviour of dispersant on nano zirconia powder,” J. Europ. Ceram. Soc., 19 ,1725-1730 (1999).
    34. Yeo, J.G., Jung, Y.G. and Choi, S.C., “Design and microstructure of ZrO2/SUS316 functionally graded materials by tape casting,” Mate. Lett. 37, 304-311 (1998).
    35. Wang, J. and Gao, L., “Surface Properties of Polymer Adsorbed Zirconia Nanoparticles”, Nanostruct. Mater. , 11, 451-457 (1999).
    36. Solomon, M.J., Saeki, T., Wan, M., Scales, P.J., Boger, D.V. and Usui, H. “Effect of Adsorbed Surfactants on the Rheology of Colloidal Zirconia Suspensions,” Langmuir, 15, 20-26 (1999).
    37. Zhang, J.X., Ye, F., Sun, J., Jiang, D.L. and Iwasa, M., “Aqueous Processing of Fine ZrO2 Particles,” Colloids and Surfaces A- physicochemical and engineering aspects, 254, 199-205 (2005).

    下載圖示 校內:2007-09-14公開
    校外:2009-09-14公開
    QR CODE